13 research outputs found

    Development of the MAMA Detectors for the Hubble Space Telescope Imaging Spectrograph

    Get PDF
    The development of the Multi-Anode Microchannel Array (MAMA) detector systems started in the early 1970's in order to produce multi-element detector arrays for use in spectrographs for solar studies from the Skylab-B mission. Development of the MAMA detectors for spectrographs on the Hubble Space Telescope (HST) began in the late 1970's, and reached its culmination with the successful installation of the Space Telescope Imaging Spectrograph (STIS) on the second HST servicing mission (STS-82 launched 11 February 1997). Under NASA Contract NAS5-29389 from December 1986 through June 1994 we supported the development of the MAMA detectors for STIS, including complementary sounding rocket and ground-based research programs. This final report describes the results of the MAMA detector development program for STIS

    The off-axis channel macroplate

    Get PDF
    High-gain microchannel plates (MCPs) which utilize curvature of the channel to inhibit ion feedback (C-plate MCRs) have demonstrated excellent performance characteristics. However, C-plate MCPs are at present costly to fabricate, and the shearing process used to curve the channels produces a low device yield. Described here is a totally new type of high-gain MCP structure in which each channel has an axially symmetric curvature. Initial tests of proof-of-concept units of these MCPs with 75-micron-diameter channels (macroplates) suggest that their performance characteristics have the potential to be equal to those of a C-plate MCP while the fabrication process is no more complex than that of a conventional straight-channel MCP

    Report of the ultraviolet and visible sensors panel

    Get PDF
    In order to meet the science objectives of the Astrotech 21 mission set the Ultraviolet (UV) and Visible Sensors Panel made a number of recommendations. In the UV wavelength range of 0.01 to 0.3 micro-m the focus is on the need for large format high quantum efficiency, radiation hard 'solar-blind' detectors. Options recommended for support include Si and non-Si charge coupled devices (CCDs) as well as photocathodes with improved microchannel plate readouts. For the 0.3 to 0.9 micro-m range, it was felt that Si CCDs offer the best option for high quantum efficiencies at these wavelengths. In the 0.9 to 2.5 micro-m the panel recommended support for the investigation of monolithic arrays. Finally, the panel noted that the implementation of very large arrays will require new data transmission, data recording, and data handling technologies

    The ultra high resolution XUV spectroheliograph: An attached payload for the Space Station Freedom

    Get PDF
    The principle goal of the ultra high resolution XUV spectroheliograph (UHRXS) is to improve the ability to identify and understand the fundamental physical processes that shape the structure and dynamics of the solar chromosphere and corona. The ability of the UHRXS imaging telescope and spectrographs to resolve fine scale structures over a broad wavelength (and hence temperature) range is critical to this mission. The scientific objectives and instrumental capabilities of the UHRXS investigation are reviewed before proceeding to a discussion of the expected performance of the UHRXS observatory

    Speckle Observations of Binary Stars with the WIYN Telescope. I. Measures During 1997

    Get PDF
    Two hundred seventy-seven position angle and separation measures of 154 double stars are presented. Three of the systems were previously unknown to be double, and 16 other systems were discovered earlier this decade by the Hipparcos satellite. Measures are derived from speckle observations taken with the Wisconsin-Indiana-Yale-NOAO (WIYN) 3.5 m telescope located at Kitt Peak, Arizona. Speckle images were obtained using two different imaging detectors, namely, a multianode microchannel array (MAMA) detector and a fast-readout CCD. A measurement precision study was performed on a sample of binaries with extremely well known orbits by comparing the measures obtained here to the ephemeris predictions. For the CCD, the root mean square (rms) deviation of residuals was found to be 3.5 milliarcseconds (mas) in separation and 1.2d in position angle, while the residuals of the MAMA data varied depending on the magnification used and seeing conditions but can be comparable or superior to the CCD values. In addition, the two cameras were compared in terms of the detection limit in total magnitude and magnitude difference of the systems under study. The MAMA system has the ability to detect some systems with magnitude differences larger than 3.5, although reliable astrometry could not be obtained on these objects. Reliable astrometry was obtained on a system of magnitude difference of 5.3 with the CCD system (Refer to PDF file for exact formulas)

    UV Absorption Lines from High-Velocity Gas in the Vela Supernova Remnant: New insights from STIS Echelle Observations of HD72089

    Get PDF
    The star HD72089 is located behind the Vela supernova remnant and shows a complex array of high and low velocity interstellar absorption features arising from shocked clouds. A spectrum of this star was recorded over the wavelength range 1196.4 to 1397.2 Angstroms at a resolving power lambda/Delta lambda = 110,000 and signal-to-noise ratio of 32 by STIS on the Hubble Space Telescope. We have identified 7 narrow components of C I and have measured their relative populations in excited fine-structure levels. Broader features at heliocentric velocities ranging from -70 to +130 km/s are seen in C II, N I, O I, Si II, S II and Ni II. In the high-velocity components, the unusually low abundances of N I and O I, relative to S II and Si II, suggest that these elements may be preferentially ionized to higher stages by radiation from hot gas immediately behind the shock fronts.Comment: 11 pages, 2 figures, Latex. Submitted for the special HST ERO issue of the Astrophysical Journal Letter

    The extra-terrestrial vacuum-ultraviolet wavelength range

    No full text
    Abstract Electromagnetic radiation in the vacuum-ultraviolet (VUV) and extra-terrestrial range at wavelengths from 10 nm to 300 nm is absorbed in the upper atmosphere by ozone, molecular and atomic oxygen, and molecular nitrogen. Observations at wavelengths down to ≈ 200 nm can be carried out from stratospheric balloons, and observations below 200 nm require space platforms operating at altitudes above 250 km. The VUV spectral region contains emission lines and continua arising from plasma at formation temperatures ranging from about 10 4 K to more than 10 7 K. This chapter describes the wide range of plasma diagnostic techniques available at VUV wavelengths, and the development of instrumentation for studies of the high-temperature solar outer atmosphere and astrophysical plasmas. Finally, the prospects for future studies are briefly discussed. The early days It has been known for many years that the outer atmosphere of the Sun is significantly hotter than the 5800 K temperature of the photosphere, particularly from observations of forbidden coronal lines at 637.5 nm (Fe x-red line) and 530.3 nm (Fe xiv-green line) by At shorter wavelengths below ≈ 200 nm molecular oxygen in both the Herzberg dissociation continuum and the Schumann-Runge bands causes complete absorption at higher altitudes, and atomic oxygen and molecular nitrogen at wavelengths below ≈ 90 nm cause absorption at altitudes above 160 km. The altitude at whic

    Event-counting imaging with MCP and WSA

    No full text

    The development and test of a deformable diffraction grating for a stigmatic EUV spectroheliometer

    Get PDF
    The objectives were to address currently unanswered fundamental questions concerning the fine scale structure of the chromosphere, transition region, and corona. The unique characteristics of the spectroheliometer was used in combination with plasma diagnostic techniques to study the temperature, density, and velocity structures of specific features in the solar outer atmosphere. A unified understanding was sought of the interplay between the time dependent geometry of the magnetic field structure and the associated flows of mass and energy, the key to which lies in the smallest spatial scales that are unobservable with current EUV instruments. Toroidal diffraction gratings were fabricated and tested by a new technique using an elastically deformable substrate. The toroidal diffraction gratings was procured and tested to be used for the evaluation of the Multi-Anode Microchannel Array (MAMA) detector systems for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) and UV Coronagraph Spectrometer (UVCS) instruments on the SOHO mission
    corecore