11,452 research outputs found

    Passive dual spin misalignment compensators

    Get PDF
    A combination dual-spin gyroscopically stabilized device is described having a spinning rotor and a non-spinning platform. Two substantially lossless mechanical resonators, resonant at the spin frequency, are orthogonally positioned on the platform for compensation for the disturbing torque acting on the platform due to rotor misalignment

    Gravity gradient attitude control system Patent

    Get PDF
    Gravity gradient attitude control system with gravity gradiometer and reaction wheels for artificial satellite attitude contro

    Self-Regulation in a Web-Based Course: A Case Study

    Get PDF
    Little is known about how successful students in Web-based courses self-regulate their learning. This descriptive case study used a social cognitive model of self-regulated learning (SRL) to investigate how six graduate students used and adapted traditional SRL strategies to complete tasks and cope with challenges in a Web-based technology course; it also explored motivational and environmental influences on strategy use. Primary data sources were three transcribed interviews with each of the students over the course of the semester, a transcribed interview with the course instructor, and the students’ reflective journals. Archived course documents, including transcripts of threaded discussions and student Web pages, were secondary data sources. Content analysis of the data indicated that these students used many traditional SRL strategies, but they also adapted planning, organization, environmental structuring, help seeking, monitoring, record keeping, and self-reflection strategies in ways that were unique to the Web-based learning environment. The data also suggested that important motivational influences on SRL strategy use—self-efficacy, goal orientation, interest, and attributions—were shaped largely by student successes in managing the technical and social environment of the course. Important environmental influences on SRL strategy use included instructor support, peer support, and course design. Implications for online course instructors and designers, and suggestions for future research are offered

    Spur-reduced digital sinusoid synthesis

    Get PDF
    This article presents and analyzes a technique for reducing the spurious signal content in digital sinusoid synthesis. Spurious-harmonic (spur) reduction is accomplished through dithering both amplitude and phase values prior to word-length reduction. The analytical approach developed for analog quantization is used to produce new bounds on spur performance in these dithered systems. Amplitude dithering allows output word-length reduction without introducing additional spurs. Effects of periodic dither similar to those produced by a pseudonoise (PN) generator are analyzed. This phase-dithering method provides a spur reduction of 6(M plus one) dB per phase bit when the dither consists of M uniform variates. While the spur reduction is at the expense of an increase in system noise, the noise power can be made white, making the power spectral density small. This technique permits the use of a smaller number of phase bits addressing sinusoid lookup tables, resulting in an exponential decrease in system complexity. Amplitude dithering allows the use of less complicated multipliers and narrower data paths in purely digital applications, as well as the use of coarse resolution, highly linear digital to analog converters (DAC's) to obtain spur performance limited by the DAC linearity rather than its resolution

    Stacking-fault energies for Ag, Cu, and Ni from empirical tight-binding potentials

    Full text link
    The intrinsic stacking-fault energies and free energies for Ag, Cu, and Ni are derived from molecular-dynamics simulations using the empirical tight-binding potentials of Cleri and Rosato [Phys. Rev. B 48, 22 (1993)]. While the results show significant deviations from experimental data, the general trend between the elements remains correct. This allows to use the potentials for qualitative comparisons between metals with high and low stacking-fault energies. Moreover, the effect of stacking faults on the local vibrational properties near the fault is examined. It turns out that the stacking fault has the strongest effect on modes in the center of the transverse peak and its effect is localized in a region of approximately eight monolayers around the defect.Comment: 5 pages, 2 figures, accepted for publication in Phys. Rev.
    • …
    corecore