49,096 research outputs found

    The role of phosphorylation and dephosphorylation of shell matrix proteins in shell formation : an in vivo and in vitro study

    Get PDF
    Protein phosphorylation is a fundamental mechanism regulating many aspects of cellular processes. Shell matrix proteins (SMPs) control crystal nucleation, polymorphism, morphology, and organization of calcium carbonate crystallites during shell formation. SMPs phosphorylation is suggested to be important in shell formation but the mechanism is largely unknown. Here, to investigate the mechanism of phosphorylation of SMPs in biomineralization, we performed in vivo and in vitro experiment. By injection of antibody against the anti-phosphoserine/threonine /tyrosine into the extrapallial fluid of the pearl oyster Pinctada fucata, phosphorylation of matrix proteins were significantly reduced after 6 days. Newly formed prismatic layers and nacre tablet were found to grow abnormally with reduced crystallinity and possibly changed crystal orientation shown by Raman spectroscopy. In addition, regeneration of shells is also inhibited in vivo. Then, protein phosphatase was used to dephosphorylate SMPs extracted from the shells. After dephosphorylation, the ability of SMPs to inhibiting calcium carbonate formation have been reduced. Surprisingly, the ability of SMPs to modulate crystal morphology have been largely compromised although phosphorylation extent remained to be at least half of the control. Furthermore, dephosphorylation of SMPs changed the distribution of protein occlusions and decreased the amount of protein occlusions inside crystals shown by confocal imaging, indicating interaction between phosphorylated SMPs and crystals. Taken together, this study provides insight into the mechanism of phosphorylation of SMPs during shell formation

    Uniqueness of Nash equilibria in quantum Cournot duopoly game

    Full text link
    A quantum Cournot game of which classical form game has multiple Nash equilibria is examined. Although the classical equilibria fail to be Pareto optimal, the quantum equilibrium exhibits the following two properties, (i) if the measurement of entanglement between strategic variables chosen by the competing firms is sufficiently large, the multiplicity of equilibria vanishes, and, (ii) the more strongly the strategic variables are entangled, the more closely the unique equilibrium approaches to the optimal one.Comment: 7 pages, 2 figure

    On the iterated Crank-Nicolson for hyperbolic and parabolic equations in numerical relativity

    Full text link
    The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used in numerical relativity for the solution of both hyperbolic and parabolic partial differential equations. We here extend the recent work on the stability of this scheme for hyperbolic equations by investigating the properties when the average between the predicted and corrected values is made with unequal weights and when the scheme is applied to a parabolic equation. We also propose a variant of the scheme in which the coefficients in the averages are swapped between two corrections leading to systematically larger amplification factors and to a smaller numerical dispersion.Comment: 7 pages, 3 figure

    A New Spin Gapless Semiconductors Family: Quaternary Heusler Compounds

    Full text link
    Using first-principles calculations, we investigate the band structures of a series of quaternary LiMgPdSn-type Heusler compounds. Our calculation results show that five compounds CoFeMnSi, CoFeCrAl, CoMnCrSi, CoFeVSi and FeMnCrSb possess unique electronic structures characterized by a half-metallic gap in one spin direction while a zero-width gap in the other spin direction showing spin gapless semiconducting behavior. We further analysis the electronic and magnetic properties of all quaternary Heusler alloys involved, and reveal a semi-empirical general rule (total valence electrons number being 26 or 28) for indentifying spin gapless semiconductors in Heusler compounds. The influences of lattice distortion and main-group element change have also been discussed.Comment: 20 pages, 5 figures, 1 supplementary file, submitted for publicatio
    • …
    corecore