8,420 research outputs found

    PDH17: ARE THE BRITISH GOVERNMENT'S HEALTHCARE REFORMS TARGETING PATIENT'S NEEDS?: EVIDENCE FROM A COMPARISON OF TWO GP SURVEYS ON MUSCULOSKELETAL CARE

    Get PDF

    Shaping plasmon beams via the controlled illumination of finite-size plasmonic crystals

    Get PDF
    Plasmonic crystals provide many passive and active optical functionalities, including enhanced sensing, optical nonlinearities, light extraction from LEDs and coupling to and from subwavelength waveguides. Here we study, both experimentally and numerically, the coherent control of SPP beam excitation in finite size plasmonic crystals under focussed illumination. The correct combination of the illuminating spot size, its position relative to the plasmonic crystal, wavelength and polarisation enables the efficient shaping and directionality of SPP beam launching. We show that under strongly focussed illumination, the illuminated part of the crystal acts as an antenna, launching surface plasmon waves which are subsequently filtered by the surrounding periodic lattice. Changing the illumination conditions provides rich opportunities to engineer the SPP emission pattern. This offers an alternative technique to actively modulate and control plasmonic signals, either via micro- and nano-electromechanical switches or with electro- and all-optical beam steering which have direct implications for the development of new integrated nanophotonic devices, such as plasmonic couplers and switches and on-chip signal demultiplexing. This approach can be generalised to all kinds of surface waves, either for the coupling and discrimination of light in planar dielectric waveguides or the generation and control of non-diffractive SPP beams

    Self-consistent symmetries in the proton-neutron Hartree-Fock-Bogoliubov approach

    Full text link
    Symmetry properties of densities and mean fields appearing in the nuclear Density Functional Theory with pairing are studied. We consider energy functionals that depend only on local densities and their derivatives. The most important self-consistent symmetries are discussed: spherical, axial, space-inversion, and mirror symmetries. In each case, the consequences of breaking or conserving the time-reversal and/or proton-neutron symmetries are discussed and summarized in a tabulated form, useful in practical applications.Comment: 26 RevTex pages, 1 eps figure, 9 tables, submitted to Physical Review

    VARI-QUIR II: space--time neutron diffusion with feedback

    Get PDF

    Incremental, Inductive Coverability

    Full text link
    We give an incremental, inductive (IC3) procedure to check coverability of well-structured transition systems. Our procedure generalizes the IC3 procedure for safety verification that has been successfully applied in finite-state hardware verification to infinite-state well-structured transition systems. We show that our procedure is sound, complete, and terminating for downward-finite well-structured transition systems---where each state has a finite number of states below it---a class that contains extensions of Petri nets, broadcast protocols, and lossy channel systems. We have implemented our algorithm for checking coverability of Petri nets. We describe how the algorithm can be efficiently implemented without the use of SMT solvers. Our experiments on standard Petri net benchmarks show that IC3 is competitive with state-of-the-art implementations for coverability based on symbolic backward analysis or expand-enlarge-and-check algorithms both in time taken and space usage.Comment: Non-reviewed version, original version submitted to CAV 2013; this is a revised version, containing more experimental results and some correction

    Integral closure of rings of integer-valued polynomials on algebras

    Full text link
    Let DD be an integrally closed domain with quotient field KK. Let AA be a torsion-free DD-algebra that is finitely generated as a DD-module. For every aa in AA we consider its minimal polynomial ÎŒa(X)∈D[X]\mu_a(X)\in D[X], i.e. the monic polynomial of least degree such that ÎŒa(a)=0\mu_a(a)=0. The ring IntK(A){\rm Int}_K(A) consists of polynomials in K[X]K[X] that send elements of AA back to AA under evaluation. If DD has finite residue rings, we show that the integral closure of IntK(A){\rm Int}_K(A) is the ring of polynomials in K[X]K[X] which map the roots in an algebraic closure of KK of all the ÎŒa(X)\mu_a(X), a∈Aa\in A, into elements that are integral over DD. The result is obtained by identifying AA with a DD-subalgebra of the matrix algebra Mn(K)M_n(K) for some nn and then considering polynomials which map a matrix to a matrix integral over DD. We also obtain information about polynomially dense subsets of these rings of polynomials.Comment: Keywords: Integer-valued polynomial, matrix, triangular matrix, integral closure, pullback, polynomially dense set. accepted for publication in the volume "Commutative rings, integer-valued polynomials and polynomial functions", M. Fontana, S. Frisch and S. Glaz (editors), Springer 201

    Dynamical Tide in Solar-Type Binaries

    Get PDF
    Circularization of late-type main-sequence binaries is usually attributed to turbulent convection, while that of early-type binaries is explained by resonant excitation of g modes. We show that the latter mechanism operates in solar-type stars also and is at least as effective as convection, despite inefficient damping of g modes in the radiative core. The maximum period at which this mechanism can circularize a binary composed of solar-type stars in 10 Gyr is as low as 3 days, if the modes are damped by radiative diffusion only and g-mode resonances are fixed; or as high as 6 days, if one allows for evolution of the resonances and for nonlinear damping near inner turning points. Even the larger theoretical period falls short of the observed transition period by a factor two.Comment: 17 pages, 2 postscript figures, uses aaspp4.sty. Submitted to Ap

    Physical Database Design: A DSS Approach*

    Get PDF
    This paper presents a working decision support system for use in the physical design of a database. Physical database design, although a structured decision problem, lends itself to a decision support approach because closed form algorithms are computationally infeasible. The paper describes the physical database design problem, presents an overview of a software system for use in solving this problem, and evaluates the use of the system in solving a sample problem

    Validation of lethality processes for products with slow come up time: Bacon and bone-in ham

    Get PDF
    Pork bellies and boneless hams were smoked or cooked using unusually long processes to determine the impact of extended come-up times on the populations of Clostridium perfringens, Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes. The products were formulated using brine formulations representative of what might be used in commercial production, and the thermal processes were more than doubled in length. Pork bellies and boneless hams were inoculated on the surface as well as 1 cm below the surface, and samples were collected every 3 h. The populations of C. perfringens (spores and vegetative cells) at internal locations of pork bellies increased by less than 1 log10 and declined significantly (approximately 3 log10/cm2) on the surface of the bellies during an extended bacon process. The populations of S. enterica, L. monocytogenes and S. aureusdid not increase during the extended bacon process. The populations of C. perfringens (spores and vegetative cells), S. aureus, S. enterica and L. monocytogenesdeclined significantly over an extended ham process. There were significant population reductions (\u3e2 log10/cm2) at 7 h (surface) and 12 h (\u3e5 log10/g; internal) for the hams. Populations of both surface and internal locations of the hams declined to a point approaching the limit of detection of the assays within 17 h

    Habitat‐dependent occupancy and movement in a migrant songbird highlights the importance of mangroves and forested lagoons in Panama and Colombia

    Get PDF
    Climate change is predicted to impact tropical mangrove forests due to decreased rainfall, sea‐level rise, and increased seasonality of flooding. Such changes are likely to influence habitat quality for migratory songbirds occupying mangrove wetlands during the tropical dry season. Overwintering habitat quality is known to be associated with fitness in migratory songbirds, yet studies have focused primarily on territorial species. Little is known about the ecology of nonterritorial species that may display more complex movement patterns within and among habitats of differing quality. In this study, we assess within‐season survival and movement at two spatio‐temporal scales of a nonterritorial overwintering bird, the prothonotary warbler (Protonotaria citrea), that depends on mangroves and tropical lowland forests. Specifically, we (a) estimated within‐patch survival and persistence over a six‐week period using radio‐tagged birds in central Panama and (b) modeled abundance and occupancy dynamics at survey points throughout eastern Panama and northern Colombia as the dry season progressed. We found that site persistence was highest in mangroves; however, the probability of survival did not differ among habitats. The probability of warbler occupancy increased with canopy cover, and wet habitats were least likely to experience local extinction as the dry season progressed. We also found that warbler abundance is highest in forests with the tallest canopies. This study is one of the first to demonstrate habitat‐dependent occupancy and movement in a nonterritorial overwintering migrant songbird, and our findings highlight the need to conserve intact, mature mangrove, and lowland forests
    • 

    corecore