276 research outputs found
Satellite observations of type 3 solar radio bursts at low frequencies
Type III solar radio bursts were observed from 10 MHz to 10 KHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 solar radii to at least 1 AU from the sun. This review summarizes the morphology, characteristics and analysis of individual as well as storms of bursts. Burst rise times are interpreted in terms of exciter length and dispersion while decay times refer to the radiation damping process. The combination of radio observations at the lower frequencies and in-situ measurements on nonrelativistic electrons at 1 AU provide data on the energy range and efficiency of the wave-particle interactions responsible for the radio emission
A new high-speed solar radio spectrograph for meter and decameter wavelengths
The design and characteristics of a high resolution, digital solar spectrograph are discussed. The spectrometer operates in the 10 to 80 MHz range. The primary considerations in the design of the spectrograph were: (1) optimun sensitivity, (2) wide dynamic range, (3) flexibility in time and frequency resolution, and (4) modern data handling techniques with a simple computer interface
Type 3 solar radio burst storms observed at low frequencies. Part 1 - Storm morphology
Low-frequency observations of type 3 solar radio bursts as function of solar rotatio
Directivity of low frequency solar type 3 radio bursts
The occurrence rate of type 3 solar bursts in the frequency range 4.9 MHz to 30 kHz was analyzed as a function of burst intensity and burst arrival direction. Results show that: (1) the occurrence rate of bursts falls off with increasing flux and (2) the distribution of burst arrival directions at each frequency shows a significantly larger number of bursts observed west of the earth-sun line than east of it. This western excess in occurrence rate appears to be correlated with the direction of the average interplanetary magnetic field, and is interpreted as beaming of the observed burst radiation along the magnetic field direction
Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU
Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency
Technique to determine location of radio sources from measurements taken on spinning spacecraft
The procedure developed to extract average source direction and average source size from spin-modulated radio astronomy data measured on the IMP-6 spacecraft is described. Because all measurements are used, rather than just finding maxima or minima in the data, the method is very sensitive, even in the presence of large amounts of noise. The technique is applicable to all experiments with directivity characteristics. It is suitable for onboard processing on satellites to reduce the data flow to Earth. The application to spin-modulated nonpolarized radio astronomy data is made and includes the effects of noise, background, and second source interference. The analysis was tested with computer simulated data and the results agree with analytic predictions. Applications of this method with IMP-6 radio data have led to: (1) determination of source positions of traveling solar radio bursts at large distances from the Sun; (2) mapping of magnetospheric radio emissions by radio triangulation; and (3) detection of low frequency radio emissions from Jupiter and Saturn
Interplanetary baseline observations of type 3 solar radio bursts
Simultaneous observations of type III radio bursts using spacecraft separated by several tenths of an AU were made using the solar orbiters HELIOS-A and -B. The burst beginning at 1922 UT on March 28, 1976, was located from the intersection of the source directions measured at each spacecraft, and from the burst arrival time differences. Wide baseline observations give the radial distance of the source at each observing frequency. Consequently, coronal electron densities and exciter velocity were determined directly, without the need to assume a density model as is done with single spacecraft observations. The separation of HELIOS-A and -B also provided the first measurements of burst directivity at low frequencies. For the March 28 burst, the intensity observed from near the source longitude (HELIOS-B) was significantly greater than from 60 W of the source (HELIOS-A)
Type 2 solar radio events observed in the interplanetary medium. Part 1: General characteristics
Twelve type 2 solar radio events were observed in the 2 MHz to 30 kHz frequency range by the radio astronomy experiment on the ISEE-3 satellite over the period from September 1978 to December 1979. These data provide the most comprehensive sample of type 2 radio bursts observed at kilometer wavelengths. Dynamic spectra of a number of events are presented. Where possible, the 12 events were associated with an initiating flare, ground based radio data, the passage of a shock at the spacecraft, and the sudden commencement of a geomagnetic storm. The general characteristics of kilometric type 2 bursts are discussed
- …