7 research outputs found

    Relative Abundance and Strain Diversity in the Bacterial Endosymbiont Community of a Sap-Feeding Insect Across Its Native and Introduced Geographic Range

    No full text
    Most insects are associated with bacterial symbionts. The bacterial diversity and community composition within hosts may play an important role in shaping insect population biology, ecology and evolution. We focussed on the bacterial microbiome of the Australian fig homotomid Mycopsylla fici (Hemiptera: Psylloidea), which can cause defoliation of its only host tree, Ficus macrophylla. This sap-feeding insect is native to mainland Australia and Lord Howe Island (LHI) but also occurs where its host has been planted, notably in New Zealand. By using a high-throughput 16S rDNA amplicon sequencing approach, we compared the bacterial diversity and community composition in individual adult males of four host populations, Sydney, Brisbane, LHI and Auckland. We also compared males, females and nymphs of the Sydney population. The microbiome of M. fici was simple and consisted mostly of the following three maternally inherited endosymbiont species: the primary endosymbiont Carsonella, a secondary (S-) endosymbiont and Wolbachia. However, the relative abundance of their sequence reads varied between host populations, except for similarities between Sydney and Auckland. In addition, insects from Sydney and Auckland had identical bacterial strains supporting the hypothesis that Sydney is the source population for Auckland. In contrast, mainland and LHI populations harboured the same S-endosymbiont, co-diverged Carsonella but different Wolbachia strains. Besides detecting endosymbiont-specific patterns of either co-evolution or horizontal acquisition, our study highlights that relative abundance of maternally inherited endosymbionts should also be taken into account when studying bacterial communities across host populations, as variations in bacterial density may impact host biology and ecology

    North American Free Trade Negotiations:

    No full text

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns (code)

    No full text
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable, with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns, 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12%, and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    No full text
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable, with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns, 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12%, and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide
    corecore