186 research outputs found

    The role of posterior fossa decompression in acute cerebellitis

    Get PDF
    Background: We present two cases of children who were diagnosed with cerebellitis with acute cerebellar swelling. This rare pathology is potentially fatal, and no clear treatment guidelines are described in the literature. Discussion: Considering our experience, we discuss the different therapeutic strategies and propose aggressive surgical measures consisting of external ventricular drainage and posterior fossa decompression in case of failure of early response to medical treatment to limit secondary cerebellar and brainstem lesion

    Eosinophilic aseptic arachnoiditis: A neurological complication in HIV-negative drug-addicts

    Get PDF
    Abstract.: The finding of an eosinophilic aseptic meningitis in IV drug abuse is usually suggestive of an opportunistic infection or an allergic reaction. However, HIV-negative patients are at lower risk for developing these complications. Two young HIV-negative patients, with previous intravenous polytoxicomany, developed cystic arachnoiditis over the spinal cord associated with eosinophilic meningitis. Histology of the meningeal spinal cord lesions revealed a vasculocentric mixed inflammatory reaction. In one patient prednisone led to marked clinical improvement. Since infection, vasculitis, sarcoidosis and previous myelography were ruled out, we believe that the syndrome of eosinophilic aseptic arachnoiditis may be related to an hyperergic reaction in the meniges toward drug-adulterants inoculated through the intravenous rout

    Automatic Subthalamic Nucleus Targeting for Deep Brain Stimulation. A Validation Study

    Get PDF
    In functional stereotactic neurosurgery, one of the cornerstones upon which the success and the operating time depends is an accurate targeting. The subthalamic nucleus (STN) is the usual target involved when applying Deep Brain Stimulation (DBS) for the Parkinsons disease (PD). Unfortunately, STN is usually not clearly visible in common medical imaging modalities, which justifies the use of atlas-based segmentation techniques to infer the STN location. We propose a scheme that allows both, to perform a comparison between different non-rigid atlas registration algorithms and to evaluate their usability to locate the STN automatically. Using our validation evaluation scheme and accurate registration algorithms we demonstrate that automatic STN localization is possible and accurate

    feature-segmentation-based registration for fast and accurate deep brain stimulation targeting

    Get PDF
    Objects Deep brain stimulation (DBS) has turned out to be the surgical technique of choice for the treatment of movement disorders, e.g. Parkinsons disease (PD), the usual target being the subthalamic nucleus (STN). The targeting of such a small structure is crucial for the outcome of the surgery. Unfortunately the STN is in general not easily distinguishable in common medical images. Material and Methods Eight bilaterally implanted PD patients were considered (16 STNs). A three-dimensional MR T1-weighted sequence and inversion recovery T2-weighted coronal slices were acquired pre-operatively. We study the influence on the STN location of several surrounding structures through a proposed methodology for the construction of a ground truth and an original validation scheme that allows evaluating performances of different targeting methods. Results The inter-expert variability in identifying the STN location is 1.61 ± 0.29 mm and 1.40 ± 0.38 mm for expert 1 and 2 respectively while the best choice of features using segmentation-based registration gives an error of 1.55 ± 0.73 mm. Conclusions By registering a binary mask of the third and lateral ventricles of the patient with its corresponding binary mask of the atlas we obtain a fast, automatic and accurate pre-operative targeting comparable to the experts variability

    The role of posterior fossa decompression in acute cerebellitis.

    Get PDF
    BACKGROUND: We present two cases of children who were diagnosed with cerebellitis with acute cerebellar swelling. This rare pathology is potentially fatal, and no clear treatment guidelines are described in the literature. DISCUSSION: Considering our experience, we discuss the different therapeutic strategies and propose aggressive surgical measures consisting of external ventricular drainage and posterior fossa decompression in case of failure of early response to medical treatment to limit secondary cerebellar and brainstem lesions

    Validation of Experts Versus Atlas-Based and Automatic Registration Methods for Subthalamic Nucleus Targeting on MRI

    Get PDF
    Objects. In functional stereotactic neurosurgery, one of the cornerstones upon which the success and the operating time depends is an accurate targeting. The subthalamic nucleus (STN) is the usual target involved when applying Deep Brain Stimulation (DBS) for Parkinson's disease (PD). Unfortunately, STN is usually not clearly visible in common medical imaging modalities, which justifies the use of atlas-based segmentation techniques to infer the STN location. Materials and Methods. 8 bilaterally implanted PD patients were included in this study. A three-dimensional T1-weighted sequence and inversion recovery T2-weighted coronal slices were acquired pre-operatively. We propose a methodology for the construction of a ground truth of the STN location and a scheme that allows both, to perform a comparison between different non-rigid registration algorithms and to evaluate their usability to locate the STN automatically. Results. The intra-expert variability in identifying the STN location is 1.06 ± 0.61 mm while the best non-rigid registration method gives an error of 1.80 ± 0.62 mm. On the other hand, statistical tests show that an affine registration with only 12 degrees-of-freedom is not enough for this application. Conclusions. Using our validation-evaluation scheme we demonstrate that automatic STN localization is possible and accurate with non-rigid registration algorithms

    Eosinophilic aseptic arachnoiditis. A neurological complication in HIV-negative drug-addicts.

    Get PDF
    The finding of an eosinophilic aseptic meningitis in IV drug abuse is usually suggestive of an opportunistic infection or an allergic reaction. However, HIV-negative patients are at lower risk for developing these complications. Two young HIV-negative patients, with previous intravenous polytoxicomany, developed cystic arachnoiditis over the spinal cord associated with eosinophilic meningitis. Histology of the meningeal spinal cord lesions revealed a vasculocentric mixed inflammatory reaction. In one patient prednisone led to marked clinical improvement. Since infection, vasculitis, sarcoidosis and previous myelography were ruled out, we believe that the syndrome of eosinophilic aseptic arachnoiditis may be related to an hyperergic reaction in the meniges toward drug-adulterants inoculated through the intravenous route

    Cross Validation of Experts Versus Registration Methods for Target Localization in Deep Brain Stimulation

    Get PDF
    In the last five years, Deep Brain Stimulation (DBS) has become the most popular and effective surgical technique for the treatment of Parkinsons disease (PD). The Subthalamic Nucleus (STN) is the usual target involved when applying DBS. Unfortunately, the STN is in general not visible in common medical imaging modalities. Therefore, atlas-based segmentation is commonly considered to locate it in the images. In this paper, we propose a scheme that allows both, to perform a comparison between different registration algorithms and to evaluate their ability to locate the STN automatically. Using this scheme we can evaluate the expert variability against the error of the algorithms and we demonstrate that automatic STN location is possible and as accurate as the methods currently used

    Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The etiology of AIS remains unclear, thus various hypotheses concerning its pathomechanism have been proposed. To date, biomechanical modeling has not been used to thoroughly study the influence of the abnormal growth profile (i.e., the growth rate of the vertebral body during the growth period) on the pathomechanism of curve progression in AIS. This study investigated the hypothesis that AIS progression is associated with the abnormal growth profiles of the anterior column of the spine.</p> <p>Methods</p> <p>A finite element model of the spinal column including growth dynamics was utilized. The initial geometric models were constructed from the bi-planar radiographs of a normal subject. Based on this model, five other geometric models were generated to emulate different coronal and sagittal curves. The detailed modeling integrated vertebral body growth plates and growth modulation spinal biomechanics. Ten years of spinal growth was simulated using AIS and normal growth profiles. Sequential measures of spinal alignments were compared.</p> <p>Results</p> <p>(1) Given the initial lateral deformity, the AIS growth profile induced a significant Cobb angle increase, which was roughly between three to five times larger compared to measures utilizing a normal growth profile. (2) Lateral deformities were absent in the models containing no initial coronal curvature. (3) The presence of a smaller kyphosis did not produce an increase lateral deformity on its own. (4) Significant reduction of the kyphosis was found in simulation results of AIS but not when using the growth profile of normal subjects.</p> <p>Conclusion</p> <p>Results from this analysis suggest that accelerated growth profiles may encourage supplementary scoliotic progression and, thus, may pose as a progressive risk factor.</p
    corecore