4,525 research outputs found

    On relations between one-dimensional quantum and two-dimensional classical spin systems

    Get PDF
    We exploit mappings between quantum and classical systems in order to obtain a class of two-dimensional classical systems with critical properties equivalent to those of the class of one-dimensional quantum systems discussed in a companion paper (J. Hutchinson, J. P. Keating, and F. Mezzadri, arXiv:1503.05732). In particular, we use three approaches: the Trotter-Suzuki mapping; the method of coherent states; and a calculation based on commuting the quantum Hamiltonian with the transfer matrix of a classical system. This enables us to establish universality of certain critical phenomena by extension from the results in our previous article for the classical systems identified.Comment: 36 page

    Comb entanglement in quantum spin chains

    Full text link
    Bipartite entanglement in the ground state of a chain of NN quantum spins can be quantified either by computing pairwise concurrence or by dividing the chain into two complementary subsystems. In the latter case the smaller subsystem is usually a single spin or a block of adjacent spins and the entanglement differentiates between critical and non-critical regimes. Here we extend this approach by considering a more general setting: our smaller subsystem SAS_A consists of a {\it comb} of LL spins, spaced pp sites apart. Our results are thus not restricted to a simple `area law', but contain non-local information, parameterized by the spacing pp. For the XX model we calculate the von-Neumann entropy analytically when NN\to \infty and investigate its dependence on LL and pp. We find that an external magnetic field induces an unexpected length scale for entanglement in this case.Comment: 6 pages, 4 figure

    Nodal domain distributions for quantum maps

    Full text link
    The statistics of the nodal lines and nodal domains of the eigenfunctions of quantum billiards have recently been observed to be fingerprints of the chaoticity of the underlying classical motion by Blum et al. (Phys. Rev. Lett., Vol. 88 (2002), 114101) and by Bogomolny and Schmit (Phys. Rev. Lett., Vol. 88 (2002), 114102). These statistics were shown to be computable from the random wave model of the eigenfunctions. We here study the analogous problem for chaotic maps whose phase space is the two-torus. We show that the distributions of the numbers of nodal points and nodal domains of the eigenvectors of the corresponding quantum maps can be computed straightforwardly and exactly using random matrix theory. We compare the predictions with the results of numerical computations involving quantum perturbed cat maps.Comment: 7 pages, 2 figures. Second version: minor correction

    Localization and its consequences for quantum walk algorithms and quantum communication

    Get PDF
    The exponential speed-up of quantum walks on certain graphs, relative to classical particles diffusing on the same graph, is a striking observation. It has suggested the possibility of new fast quantum algorithms. We point out here that quantum mechanics can also lead, through the phenomenon of localization, to exponential suppression of motion on these graphs (even in the absence of decoherence). In fact, for physical embodiments of graphs, this will be the generic behaviour. It also has implications for proposals for using spin networks, including spin chains, as quantum communication channels.Comment: 4 pages, 1 eps figure. Updated references and cosmetic changes for v

    A new correlator in quantum spin chains

    Full text link
    We propose a new correlator in one-dimensional quantum spin chains, the ss-Emptiness Formation Probability (ss-EFP). This is a natural generalization of the Emptiness Formation Probability (EFP), which is the probability that the first nn spins of the chain are all aligned downwards. In the ss-EFP we let the spins in question be separated by ss sites. The usual EFP corresponds to the special case when s=1s=1, and taking s>1s>1 allows us to quantify non-local correlations. We express the ss-EFP for the anisotropic XY model in a transverse magnetic field, a system with both critical and non-critical regimes, in terms of a Toeplitz determinant. For the isotropic XY model we find that the magnetic field induces an interesting length scale.Comment: 6 pages, 1 figur

    Spectral Statistics of "Cellular" Billiards

    Full text link
    For a bounded planar domain Ω0\Omega^0 whose boundary contains a number of flat pieces Γi\Gamma_i we consider a family of non-symmetric billiards Ω\Omega constructed by patching several copies of Ω0\Omega^0 along Γi\Gamma_i's. It is demonstrated that the length spectrum of the periodic orbits in Ω\Omega is degenerate with the multiplicities determined by a matrix group GG. We study the energy spectrum of the corresponding quantum billiard problem in Ω\Omega and show that it can be split in a number of uncorrelated subspectra corresponding to a set of irreducible representations α\alpha of GG. Assuming that the classical dynamics in Ω0\Omega^0 are chaotic, we derive a semiclassical trace formula for each spectral component and show that their energy level statistics are the same as in standard Random Matrix ensembles. Depending on whether α{\alpha} is real, pseudo-real or complex, the spectrum has either Gaussian Orthogonal, Gaussian Symplectic or Gaussian Unitary types of statistics, respectively.Comment: 18 pages, 4 figure

    On the Nodal Count Statistics for Separable Systems in any Dimension

    Full text link
    We consider the statistics of the number of nodal domains aka nodal counts for eigenfunctions of separable wave equations in arbitrary dimension. We give an explicit expression for the limiting distribution of normalised nodal counts and analyse some of its universal properties. Our results are illustrated by detailed discussion of simple examples and numerical nodal count distributions.Comment: 21 pages, 4 figure

    On the resonance eigenstates of an open quantum baker map

    Full text link
    We study the resonance eigenstates of a particular quantization of the open baker map. For any admissible value of Planck's constant, the corresponding quantum map is a subunitary matrix, and the nonzero component of its spectrum is contained inside an annulus in the complex plane, zminzzmax|z_{min}|\leq |z|\leq |z_{max}|. We consider semiclassical sequences of eigenstates, such that the moduli of their eigenvalues converge to a fixed radius rr. We prove that, if the moduli converge to r=zmaxr=|z_{max}|, then the sequence of eigenstates converges to a fixed phase space measure ρmax\rho_{max}. The same holds for sequences with eigenvalue moduli converging to zmin|z_{min}|, with a different limit measure ρmin\rho_{min}. Both these limiting measures are supported on fractal sets, which are trapped sets of the classical dynamics. For a general radius zmin<r<zmax|z_{min}|< r < |z_{max}|, we identify families of eigenstates with precise self-similar properties.Comment: 32 pages, 2 figure

    Quantization of multidimensional cat maps

    Full text link
    In this work we study cat maps with many degrees of freedom. Classical cat maps are classified using the Cayley parametrization of symplectic matrices and the closely associated center and chord generating functions. Particular attention is dedicated to loxodromic behavior, which is a new feature of two-dimensional maps. The maps are then quantized using a recently developed Weyl representation on the torus and the general condition on the Floquet angles is derived for a particular map to be quantizable. The semiclassical approximation is exact, regardless of the dimensionality or of the nature of the fixed points.Comment: 33 pages, latex, 6 figures, Submitted to Nonlinearit

    Disruption of female reproductive function by endotoxins

    Get PDF
    Endotoxemia can be caused by obesity, environmental chemical exposure, abiotic stressors, and bacterial infection. Circumstances that deleteriously impact intestinal barrier integrity can induce endotoxemia and controlled experiments have identified negative impacts of lipopolysaccharide (LPS; an endotoxin mimetic) on folliculogenesis, puberty onset, estrus behavior, ovulation, meiotic competence, luteal function and ovarian steroidogenesis. In addition, neonatal LPS exposures have transgenerational female reproductive impacts, raising concern about early life contacts to this endogenous reproductive toxicant. Aims of this review are to identify physiological stressors causing endotoxemia, to highlight potential mechanism(s) by which LPS compromises female reproduction, and identify knowledge gaps regarding how acute and/or metabolic endotoxemia influence(s) female reproduction
    corecore