9,859 research outputs found

    Pion double charge exchange on 4He

    Get PDF
    The doubly differential cross sections for the 4^4He(π+,π)4p(\pi^+,\pi^-) 4p reaction were calculated using both a two-nucleon sequential single charge exchange model and an intranuclear cascade code. Final state interactions between the two final protons which were the initial neutrons were included in both methods. At incident pion energies of 240 and 270 MeV the low-energy peak observed experimentally in the energy spectrum of the final pions can be understood only if the contribution of pion production is included. The calculated cross sections are compared with data.Comment: 25 pages, 9 figure

    A novel method for evaluating the critical nucleus and the surface tension in systems with first order phase transition

    Full text link
    We introduce a novel method for calculating the size of the critical nucleus and the value of the surface tension in systems with first order phase transition. The method is based on classical nucleation theory, and it consists in studying the thermodynamics of a sphere of given radius embedded in a frozen metastable surrounding. The frozen configuration creates a pinning field on the surface of the free sphere. The pinning field forces the sphere to stay in the metastable phase as long as its size is smaller than the critical nucleus. We test our method in two first-order systems, both on a two-dimensional lattice: a system where the parameter tuning the transition is the magnetic field, and a second system where the tuning parameter is the temperature. In both cases the results are satisfying. Unlike previous techniques, our method does not require an infinite volume limit to compute the surface tension, and it therefore gives reliable estimates even by using relatively small systems. However, our method cannot be used at, or close to, the critical point, i.e. at coexistence, where the critical nucleus becomes infinitely large.Comment: 12 pages, 15 figure

    Epeoloides pilosulus (Cresson) Rediscovered in Michigan, with Notes on the Distribution and Status of its Macropis hosts.

    Get PDF
    Epeoloides pilosulus (Cresson 1878) is one of the rarest bees in North America with only a handful of records since 1960. The last collection in Michigan was made in 1944. Epeoloides pilosulus is a brood parasite of Macropis bees, which until recently had not been collected in Michigan for several decades. Bee surveys in Midland County, Michigan have led to the rediscovery of E. pilosulus in this state – the first record in 74 years. Michigan becomes the fourth state where E. pilosulus has been rediscovered after Connecticut in 2006, New York in 2014 and Maine in 2016, and the sixth region in North America after Nova Scotia in 2002 and Alberta in 2010. State-wide bee surveys have also shown that the principal host, Macropis nuda (Provancher 1882), remains widespread in Michigan, and that Macropis patellata Patton 1880 is newly recorded for the state

    Grand potential in thermodynamics of solid bodies and surfaces

    Full text link
    Using the chemical potential of a solid in a dissolved state or the corresponding component of the chemical potential tensor at equilibrium with the solution, a new concept of grand thermodynamic potential for solids has been suggested. This allows generalizing the definition of Gibbs' quantity σ\sigma (surface work often called the solid-fluid interfacial free energy) at a planar surface as an excess grand thermodynamic potential per unit surface area that (1) does not depend on the dividing surface location and (2) is common for fluids and solids.Comment: 6 page

    A flexible electronic controller for a manipulator-type robot

    Get PDF
    Manipulator arm construction has changed little over the decades and is unlikely to change radically in the near future. The mechanical design necessary to achieve dexterity results in a system with complex dynamic properties. However, many manipulator manufacturers choose to ignore this complexity, concentrating on the mechanical design aspects rather than the design of the dynamic controller. In most cases, simple fixed-parameter single-loop PID compensators are utilised. In spite of the fact that the compensators are implemented on programmable devices, there is simply not enough processing power available to implement an improved dynamic control strategy. A multiprocessor controller has been developed which allows all the hierarchical levels of a manipulator controller to be implemented. The major advantage of the new controller is its ability to handle complex and time consuming dynamic algorithms for positioning of the robot end effector. This has been accomplished by adopting a master/slave multiprocessor configuration comprising a 20 MHz IBM PC/AT (80386) with a number of DSP cards based around the NEC 77230 floating-point DSP chip. Analog and digital input/output interfaces are provided for reading position signals and providing command signals. Tile motivation for the provision of such a controller was the desire to implement linear and nonlinear self-tuning control strategies. Both centralised (multivariable) and decentralized (single-loop) control strategies are considered and the new controller caters for both schemes by virtue of (a) the master/slave configuration with individual DSP boards for each joint, and (b) inter-board communications, allowing joint interactions to be catered for. In the paper, some of the identification algorithms required to support the nonlinear self-tuning strategies are described and real-time results presented. These results demonstrate the operation of the new controller and indicate some of its capabilities

    Physicochemical properties of 2 honeybee picornaviruses

    Get PDF

    Transport of heat and mass in a two-phase mixture. From a continuous to a discontinuous description

    Full text link
    We present a theory which describes the transport properties of the interfacial region with respect to heat and mass transfer. Postulating the local Gibbs relation for a continuous description inside the interfacial region, we derive the description of the Gibbs surface in terms of excess densities and fluxes along the surface. We introduce overall interfacial resistances and conductances as the coefficients in the force-flux relations for the Gibbs surface. We derive relations between the local resistivities for the continuous description inside the interfacial region and the overall resistances of the surface for transport between the two phases for a mixture. It is shown that interfacial resistances depend among other things on the enthalpy profile across the interface. Since this variation is substantial the coupling between heat and mass flow across the surface are also substantial. In particular, the surface puts up much more resistance to the heat and mass transfer then the homogeneous phases over a distance comparable to the thickness of the surface. This is the case not only for the pure heat conduction and diffusion but also for the cross effects like thermal diffusion. For the excess fluxes along the surface and the corresponding thermodynamic forces we derive expressions for excess conductances as integrals over the local conductivities along the surface. We also show that the curvature of the surface affects only the overall resistances for transport across the surface and not the excess conductivities along the surface.Comment: 25 pages, 2 figure

    Symbiont 'bleaching' in planktic foraminifera during the Middle Eocene Climatic Optimum

    Get PDF
    Many genera of modern planktic foraminifera are adapted to nutrient-poor (oligotrophic) surface waters by hosting photosynthetic symbionts, but it is unknown how they will respond to future changes in ocean temperature and acidity. Here we show that ca. 40 Ma, some fossil photosymbiont-bearing planktic foraminifera were temporarily 'bleached' of their symbionts coincident with transient global warming during the Middle Eocene Climatic Optimum (MECO). At Ocean Drilling Program (ODP) Sites 748 and 1051 (Southern Ocean and mid-latitude North Atlantic, respectively), the typically positive relationship between the size of photosymbiont-bearing planktic foraminifer tests and their carbon isotope ratios (δ13C) was temporarily reduced for ∼100 k.y. during the peak of the MECO. At the same time, the typically photosymbiont-bearing planktic foraminifera Acarinina suffered transient reductions in test size and relative abundance, indicating ecological stress. The coincidence of minimum δ18O values and reduction in test size–δ13C gradients suggests a link between increased sea-surface temperatures and bleaching during the MECO, although changes in pH and nutrient availability may also have played a role. Our findings show that host-photosymbiont interactions are not constant through geological time, with implications for both the evolution of trophic strategies in marine plankton and the reliability of geochemical proxy records generated from symbiont-bearing planktic foraminifera

    Generalized entropy arising from a distribution of q-indices

    Full text link
    It is by now well known that the Boltzmann-Gibbs (BG) entropy SBG=ki=1WpilnpiS_{BG}=-k\sum_{i=1}^W p_i \ln p_i can be usefully generalized into the entropy Sq=k(1i=1Wpiq)/(q1)S_q=k (1-\sum_{i=1}^Wp_i^{q}) / (q-1) (qR;S1=SBGq\in \mathcal{R}; S_1=S_{BG}). Microscopic dynamics determines, given classes of initial conditions, the occupation of the accessible phase space (or of a symmetry-determined nonzero-measure part of it), which in turn appears to determine the entropic form to be used. This occupation might be a uniform one (the usual {\it equal probability hypothesis} of BG statistical mechanics), which corresponds to q=1q=1; it might be a free-scale occupancy, which appears to correspond to q1q \ne 1. Since occupancies of phase space more complex than these are surely possible in both natural and artificial systems, the task of further generalizing the entropy appears as a desirable one, and has in fact been already undertaken in the literature. To illustrate the approach, we introduce here a quite general entropy based on a distribution of qq-indices thus generalizing SqS_q. We establish some general mathematical properties for the new entropic functional and explore some examples. We also exhibit a procedure for finding, given any entropic functional, the qq-indices distribution that produces it. Finally, on the road to establishing a quite general statistical mechanics, we briefly address possible generalized constraints under which the present entropy could be extremized, in order to produce canonical-ensemble-like stationary-state distributions for Hamiltonian systems.Comment: 14 pages including 3 figure

    Developing a quality assurance metric: a panoptic view

    Get PDF
    This article is a post-print of the published article that may be accessed at the link below. Copyright @ 2006 Sage Publications.There are a variety of techniques that lecturers can use to get feedback on their teaching - for example, module feedback and coursework results. However, a question arises about how reliable and valid are the content that goes into these quality assurance metrics. The aim of this article is to present a new approach for collecting and analysing qualitative feedback from students that could be used as the first stage in developing more reliable quality assurance metrics. The approach, known as the multi-dimensional crystal view, is based on the belief that individuals have different views on the benefits that the embedded process in a system can have on the behaviour of the system. The results of this study indicate that in the context of evaluation and feedback methods, the multi-dimensional approach appears to provide the opportunity for developing more effective student feedback mechanisms
    corecore