45,025 research outputs found

    Quantum coherence, correlated noise and Parrondo games

    Full text link
    We discuss the effect of correlated noise on the robustness of quantum coherent phenomena. First we consider a simple, toy model to illustrate the effect of such correlations on the decoherence process. Then we show how decoherence rates can be suppressed using a Parrondo-like effect. Finally, we report the results of many-body calculations in which an experimentally-measurable quantum coherence phenomenon is significantly enhanced by non-Markovian dynamics arising from the noise source.Comment: 8 page

    The 1982 ASEE-NASA Faculty Fellowship program (Aeronautics and Research)

    Get PDF
    The NASA/ASEE Summer Faculty Fellowship Program (Aeronautics and Research) conducted at the NASA Goddard Space Flight Center during the summer of 1982 is described. Abstracts of the Final Reports submitted by the Fellows detailing the results of their research are also presented

    Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    Get PDF
    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg 2Si particles evenly distributed throughout an α-Al matrix with a β-Al 3Mg 2 fully divorced eutectic phase observed in interdendritic regions. The Mg 2Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg 2Si from 52 ± 4 μm to 25 ± 0.1 μm, 35 ± 1 μm and 34 ± 1 μm respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al 3Mg 2 eutectic phase with no evidence of any effect on the primary Mg 2Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS

    Dynamic Potential-Ph Diagrams Application to Electrocatalysts for Water Oxidation

    Get PDF
    The construction and use of "dynamic potential-pH diagrams" (DPPDs), that are intended to extend the usefulness of thermodynamic Pourbaix diagrams to include kinetic considerations is described. As an example, DPPDs are presented for the comparison of electrocatalysts for water oxidation, i.e., the oxygen evolution reaction (OER), an important electrochemical reaction because of its key role in energy conversion devices and biological systems (water electrolyses, photoelectrochemical water splitting, plant photosynthesis). The criteria for obtaining kinetic data are discussed and a 3-D diagram, which shows the heterogeneous electron transfer kinetics of an electrochemical system as a function of pH and applied potential is presented. DPPDs are given for four catalysts: IrO(2), Co(3)O(4), Co(3)O(4) electrodeposited in a phosphate medium (Co-Pi) and Pt, allowing a direct comparison of the activity of different electrode materials over a broad range of experimental conditions (pH, potential, current density). In addition, the experimental setup and the factors affecting the accurate collection and presentation of data (e. g., reference electrode system, correction of ohmic drops, bubble formation) are discussed.Ministry of Education, University and Research PRIN 2008PF9TWZ, 2008N7CYL5Universita degli Studi di MilanoNational Science Foundation CHE-0808927Robert A. Welch Foundation F-0021Center for Electrochemistr
    • …
    corecore