5,465 research outputs found

    Towards Parameterized Regular Type Inference Using Set Constraints

    Full text link
    We propose a method for inferring \emph{parameterized regular types} for logic programs as solutions for systems of constraints over sets of finite ground Herbrand terms (set constraint systems). Such parameterized regular types generalize \emph{parametric} regular types by extending the scope of the parameters in the type definitions so that such parameters can relate the types of different predicates. We propose a number of enhancements to the procedure for solving the constraint systems that improve the precision of the type descriptions inferred. The resulting algorithm, together with a procedure to establish a set constraint system from a logic program, yields a program analysis that infers tighter safe approximations of the success types of the program than previous comparable work, offering a new and useful efficiency vs. precision trade-off. This is supported by experimental results, which show the feasibility of our analysis

    Measuring the transition to homogeneity with photometric redshift surveys

    Full text link
    We study the possibility of detecting the transition to homogeneity using photometric redshift catalogs. Our method is based on measuring the fractality of the projected galaxy distribution, using angular distances, and relies only on observable quantites. It thus provides a way to test the Cosmological Principle in a model-independent unbiased way. We have tested our method on different synthetic inhomogeneous catalogs, and shown that it is capable of discriminating some fractal models with relatively large fractal dimensions, in spite of the loss of information due to the radial projection. We have also studied the influence of the redshift bin width, photometric redshift errors, bias, non-linear clustering, and surveyed area, on the angular homogeneity index H2 ({\theta}) in a {\Lambda}CDM cosmology. The level to which an upcoming galaxy survey will be able to constrain the transition to homogeneity will depend mainly on the total surveyed area and the compactness of the surveyed region. In particular, a Dark Energy Survey (DES)-like survey should be able to easily discriminate certain fractal models with fractal dimensions as large as D2 = 2.95. We believe that this method will have relevant applications for upcoming large photometric redshift surveys, such as DES or the Large Synoptic Survey Telescope (LSST).Comment: 14 pages, 14 figure

    Type-4 spinors: transmuting from Elko to single-helicity spinors

    Full text link
    In this communication we briefly report an unexpected theoretical discovery which emerge from the mapping of Elko mass-dimension-one spinors into single helicity spinors. Such procedure unveils a class of spinor which is classified as type-4 spinor field within Lounesto classification. In this paper we explore the underlying physical and mathematical contents of the type-4 spinor.Comment: 9 pages, 0 figure

    A Substantial Amount of Hidden Magnetic Energy in the Quiet Sun

    Full text link
    Deciphering and understanding the small-scale magnetic activity of the quiet solar photosphere should help to solve many of the key problems of solar and stellar physics, such as the magnetic coupling to the outer atmosphere and the coronal heating. At present, we can see only 1{\sim}1% of the complex magnetism of the quiet Sun, which highlights the need to develop a reliable way to investigate the remaining 99%. Here we report three-dimensional radiative tranfer modelling of scattering polarization in atomic and molecular lines that indicates the presence of hidden, mixed-polarity fields on subresolution scales. Combining this modelling with recent observational data we find a ubiquitous tangled magnetic field with an average strength of 130{\sim}130 G, which is much stronger in the intergranular regions of solar surface convection than in the granular regions. So the average magnetic energy density in the quiet solar photosphere is at least two orders of magnitude greater than that derived from simplistic one-dimensional investigations, and sufficient to balance radiative energy losses from the solar chromosphere.Comment: 21 pages and 2 figures (letter published in Nature on July 15, 2004

    Dichroic Masers due to Radiation Anisotropy and the Influence of the Hanle Effect on the Circumstellar SiO Polarization

    Full text link
    The theory of the generation and transfer of polarized radiation, mainly developed for interpreting solar spectropolarimetric observations, allows to reconsider, in a more rigorous and elegant way, a physical mechanism that has been suggested some years ago to interpret the high degree of polarization often observed in astronomical masers. This mechanism, for which the name of 'dichroic maser' is proposed, can operate when a low density molecular cloud is illuminated by an anisotropic source of radiation (like for instance a nearby star). Here we investigate completely unsaturated masers and show that selective stimulated emission processes are capable of producing highly polarized maser radiation in a non-magnetic environment. The polarization of the maser radiation is linear and is directed tangentially to a ring equidistant to the central star. We show that the Hanle effect due to the presence of a magnetic field can produce a rotation (from the tangential direction) of the polarization by more that 45 degrees for some selected combinations of the strength, inclination and azimuth of the magnetic field vector. However, these very same conditions produce a drastic inhibition of the maser effect. The rotations of about 90 degrees observed in SiO masers in the evolved stars TX Cam by Kemball & Diamond (1997) and IRC+10011 by Desmurs et al (2000) may then be explainedby a local modification of the anisotropy of the radiation field, being transformed from mainly radial to mainly tangential.Comment: Accepted for publication on Ap

    Recent Advances in Chromospheric and Coronal Polarization Diagnostics

    Full text link
    I review some recent advances in methods to diagnose polarized radiation with which we may hope to explore the magnetism of the solar chromosphere and corona. These methods are based on the remarkable signatures that the radiatively induced quantum coherences produce in the emergent spectral line polarization and on the joint action of the Hanle and Zeeman effects. Some applications to spicules, prominences, active region filaments, emerging flux regions and the quiet chromosphere are discussed.Comment: Review paper to appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S. S. Hasan and R. J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, 200

    Effects of pesticides used in soybean crops to the egg parasitoid Trichogramma pretiosum.

    Get PDF
    ABSTRACT: This research aimed to study the effects of different insecticides, herbicides and fungicides on eggs, larvae and pupae of Trichogramma pretiosum. The results showed that studied pesticides had different impact on T. pretiosum. Esfenvalerate 7.5 and spinosad 24.0 grams ha-1 were classified as harmfull (class 4) while clorfluazuron 10.0, methoxyfenozide 19.2, lactofen 165.0, fomesafen 250.0, fluazifop 125.0, glyphosate 960.0 (Gliz® and Roundup Transorb®), azoxistrobin + ciproconazol 60.0 + 24.0, azoxistrobin 50.0 and myclobutanil 125.0 grams ha-1 were chemicals classified as harmless to all imature T. pretiosum stages. All the other chemicals evaluated had different impact on T. pretiosum being classified from harmless (class 1) to harmful (class 4) varying the impact accordingly to the different parasitoid stage. Then, less noxious products should be chosen whenever possible to be used in a soybean IPM program. RESUMO: Este trabalho teve como objetivo estudar os efeitos de diferentes inseticidas, herbicidas e fungicidas em ovos, larvas e pupas de Trichogramma pretiosum. Os resultados mostraram que os pesticidas estudados tiveram efeitos diferentes sobre T. pretiosum. Esfenvalerato 7,5 e espinosade 24,0 gramas ha-1 foram classificados como nocivos (classe 4), enquanto que clorfluazurom 10,0, metoxifenozida 19,2, lactofem 165,0, fomesafem 250,0, fluazifope 125,0, glifosato 960,0 (Gliz® e Roundup Transorb®), azoxistrobina + ciproconazole 60,0 + 24,0, azoxistrobina 50,0 e miclobutanil 125,0 gramas ha-1 foram classificados como seletivos (classe 1) para todas as fases imaturas de T. pretiosum. Todos os demais agroquímicos avaliados tiveram diferentes efeitos em T. pretiosum, sendo classificados de seletivo (classe 1) a nocivo (classe 4), variando o impacto de acordo com as diferentes fases do parasitóide. Portanto, produtos menos nocivos aos inimigos naturais devem ser escolhidos, sempre que possível, para serem usados em um programa de MIP-soja

    Anomalous response of superconducting titanium nitride resonators to terahertz radiation

    Get PDF
    We present an experimental study of KIDs fabricated of atomic layer deposited TiN films, and characterized at radiation frequencies of 350350~GHz. The responsivity to radiation is measured and found to increase with increasing radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride / aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power (NEP) improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations
    corecore