14,942 research outputs found
OH emission from cometary knots in planetary nebulae
We model the molecular emission from cometary knots in planetary nebulae
(PNe) using a combination of photoionization and photodissociation region (PDR)
codes, for a range of central star properties and gas densities. Without the
inclusion of ionizing extreme ultraviolet (EUV) radiation, our models require
central star temperatures to be near the upper limit of the range
investigated in order to match observed H and OH surface brightnesses
consistent with observations - with the addition of EUV flux, our models
reproduce observed OH surface brightnesses for .
For , the predicted OH surface brightness is much
lower, consistent with the non-detection of this molecule in PNe with such
central star temperatures. Our predicted level of H emission is somewhat
weaker than commonly observed in PNe, which may be resolved by the inclusion of
shock heating or fluorescence due to UV photons. Some of our models also
predict ArH and HeH rotational line emission above detection
thresholds, despite neither molecule having been detected in PNe, although the
inclusion of photodissociation by EUV photons, which is neglected by our
models, would be expected to reduce their detectability.Comment: Accepted by MNRAS, 11 pages, 15 figures. Author accepted manuscript.
Accepted on 24/04/18. Deposited on 27/04/1
Modelling the ArH emission from the Crab Nebula
We have performed combined photoionization and photodissociation region (PDR)
modelling of a Crab Nebula filament subjected to the synchrotron radiation from
the central pulsar wind nebula, and to a high flux of charged particles; a
greatly enhanced cosmic ray ionization rate over the standard interstellar
value, , is required to account for the lack of detected [C I]
emission in published Herschel SPIRE FTS observations of the Crab Nebula. The
observed line surface brightness ratios of the OH and ArH transitions
seen in the SPIRE FTS frequency range can only be explained with both a high
cosmic ray ionization rate and a reduced ArH dissociative recombination
rate compared to that used by previous authors, although consistent with
experimental upper limits. We find that the ArH/OH line strengths and
the observed H vibration-rotation emission can be reproduced by model
filaments with cm,
and visual extinctions within the range found for dusty globules in the Crab
Nebula, although far-infrared emission from [O I] and [C II] is higher than the
observational constraints. Models with cm
underpredict the H surface brightness, but agree with the ArH and
OH surface brightnesses and predict [O I] and [C II] line ratios consistent
with observations. These models predict HeH rotational emission above
detection thresholds, but consideration of the formation timescale suggests
that the abundance of this molecule in the Crab Nebula should be lower than the
equilibrium values obtained in our analysis.Comment: Accepted by MNRAS. Author accepted manuscript. Accepted on
05/09/2017. Deposited on 05/09/1
Recommended from our members
Evaluating single-sided natural ventilation models against full-scale idealised measurements: impact of wind direction and turbulence
Commonly single-sided natural ventilation is used in temperate climates to provide comfortable and healthy indoor environments. However, within built-up areas it is difficult to predict natural ventilation rates for buildings as they depend on many flow factors and opening type. Here, existing models are evaluated using the nine-month Refresh Cube Campaign (RCC). Pressure-based ventilation rates were determined for a small opening (1% porosity) in a cubical test building (side=6 m). The building was isolated and then sheltered in a limited staggered building array to simulate turbulent flows in dense urban areas. Internal and external flow, temperature and pressure measurements captured a wide range of scales of variability. Although the Warren and Parkins (1985, WP85) model performed best for 30-minute mean ventilation rates, all four models tested underestimated ventilation rates by a factor of 10. As wind dominated the stack effect, new coefficients were derived for the WP85 wind-driven model as a function of wind angle. Predictions were mostly improved, except for directions with complex flow patterns during the sheltered case. For the first time, the relation between ventilation rate and turbulence intensity (TI) around a full-scale building was tested. Results indicate that the wind-driven model for single-sided ventilation in highly turbulent flows (0.5<TI<4) can be improved by including TI as a multiplicative factor. Although small window openings with highly turbulent flows are common for sheltered buildings in urban areas, future model development should include a variety of configurations to assess the generality of these results
Atomic and molecular interstellar absorption lines toward the high galactic latitude stars HD~141569 and HD~157841 at ultra-high resolution
We present ultra-high resolution (0.32 km/s) spectra obtained with the 3.9m
Anglo-Australian Telescope (AAT) and Ultra-High-Resolution Facility (UHRF), of
interstellar NaI D1, D2, Ca II K, K I and CH absorption toward two high
galactic latitude stars HD141569 and HD157841. We have compared our data with
21-cm observations obtained from the Leiden/Dwingeloo HI survey. We derive the
velocity structure, column densities of the clouds represented by the various
components and identify the clouds with ISM structures seen in the region at
other wavelengths. We further derive abundances, linear depletions and H2
fractional abundances for these clouds, wherever possible. Toward HD141569, we
detect two components in our UHRF spectra : a weak, broad component at - 15
km/s, seen only in CaII K absorption and another component at 0 km/s, seen in
NaI D1, D2, Ca II K, KI and CH absorption. In the case of the HD157841
sightline, a total of 6 components are seen on our UHRF spectra in NaI D1, D2
Ca II K, K I and CH absorption. 2 of these 6 components are seen only in a
single species.Comment: 16 pages, Latex, 4 figures, ps files Astrophysical Journal (in press
Examining hope as a transdiagnostic mechanism of change across anxiety disorders and CBT treatment protocols.
Hope is a trait that represents the capacity to identify strategies or pathways to achieve goals and the motivation or agency to effectively pursue those pathways. Hope has been demonstrated to be a robust source of resilience to anxiety and stress and there is limited evidence that, as has been suggested for decades, hope may function as a core process or transdiagnostic mechanism of change in psychotherapy. The current study examined the role of hope in predicting recovery in a clinical trial in which 223 individuals with 1 of 4 anxiety disorders were randomized to transdiagnostic cognitive behavior therapy (CBT), disorder-specific CBT, or a waitlist controlled condition. Effect size results indicated moderate to large intraindividual increases in hope, that changes in hope were consistent across the five CBT treatment protocols, that changes in hope were significantly greater in CBT relative to waitlist, and that changes in hope began early in treatment. Results of growth curve analyses indicated that CBT was a robust predictor of trajectories of change in hope compared to waitlist, and that changes in hope predicted changes in both self-reported and clinician-rated anxiety. Finally, a statistically significant indirect effect was found indicating that the effects of treatment on changes in anxiety were mediated by treatment effects on hope. Together, these results suggest that hope may be a promising transdiagnostic mechanism of change that is relevant across anxiety disorders and treatment protocols.R01 MH090053 - NIMH NIH HHSAccepted manuscrip
Expectancies, working alliance, and outcome in transdiagnostic and single diagnosis treatment for anxiety disorders: an investigation of mediation
Patients’ outcome expectancies and the working alliance are two psychotherapy process variables that researchers have found to be associated with treatment outcome, irrespective of treatment approach and problem area. Despite this, little is known about the mechanisms accounting for this association, and whether contextual factors (e.g., psychotherapy type) impact the strength of these relationships. The primary aim of this study was to examine whether patient-rated working alliance quality mediates the relationship between outcome expectancies and pre- to post-treatment change in anxiety symptoms using data from a recent randomized clinical trial comparing a transdiagnostic treatment (the Unified Protocol [UP]; Barlow et al., Unified protocol for transdiagnostic treatment of emotional disorders: Client workbook, Oxford University Press, New York, 2011a; Barlow et al., Unified protocol for transdiagnostic treatment of emotional disorders: Patient workbook. New York: Oxford University Press, 2017b) to single diagnosis protocols (SDPs) for patients with a principal heterogeneous anxiety disorder (n = 179). The second aim was to explore whether cognitive-behavioral treatment condition (UP vs. SDP) moderated this indirect relationship. Results from mediation and moderated mediation models indicated that, when collapsing across the two treatment conditions, the relationship between expectancies and outcome was partially mediated by the working alliance [B = 0.037, SE = 0.05, 95% CI (.005, 0.096)]. Interestingly, within-condition analyses showed that this conditional indirect effect was only present for SDP patients, whereas in the UP condition, working alliance did not account for the association between expectancies and outcome. These findings suggest that outcome expectancies and working alliance quality may interact to influence treatment outcomes, and that the nature and strength of the relationships among these constructs may differ as a function of the specific cognitive-behavioral treatment approach utilized.This study was funded by grant R01 MH090053 from the National Institutes of Health. (R01 MH090053 - National Institutes of Health)First author draf
Recommended from our members
Identifying and characterising large ramps in power output of offshore wind farms
Recently there has been a significant change in the distribution of wind farms in Great Britain with the construction of clusters of large offshore wind farms. These clusters can produce large ramping events (i.e. changes in power output) on temporal scales which are critical for managing the power system (30 minute, 60 minute and 4 hours). This study analyses generation data from the Thames Estuary cluster in conjunction with meteorological observations to determine the magnitude and frequency of ramping events and the meteorological mechanism.
Over a 4 hour time window, the extreme ramping events of the Thames Estuary cluster were caused by the passage of a cyclone and associated weather fronts. On shorter time scales, the largest ramping events over 30 minute and 60 minute time windows are not associated with the passage of fronts. They are caused by three main meteorological mechanisms; (1) very high wind speeds associated with a cyclone causing turbine cut-out (2) gusts associated with thunderstorms and (3) organised band of convection following a front. Despite clustering offshore capacity, the addition of offshore wind farms has increased the mean separation between capacity and therefore reduced the variability in nationally aggregated generation on high frequency time scales
- …