42,716 research outputs found

    Stochastic Ergodicity Breaking: a Random Walk Approach

    Full text link
    The continuous time random walk (CTRW) model exhibits a non-ergodic phase when the average waiting time diverges. Using an analytical approach for the non-biased and the uniformly biased CTRWs, and numerical simulations for the CTRW in a potential field, we obtain the non-ergodic properties of the random walk which show strong deviations from Boltzmann--Gibbs theory. We derive the distribution function of occupation times in a bounded region of space which, in the ergodic phase recovers the Boltzmann--Gibbs theory, while in the non-ergodic phase yields a generalized non-ergodic statistical law.Comment: 5 pages, 3 figure

    Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches

    Full text link
    A semi-classical Monte Carlo model for studying three-dimensional carrier dynamics in photoconductive switches is presented. The model was used to simulate the process of photoexcitation in GaAs-based photoconductive antennas illuminated with pulses typical of mode-locked Ti:Sapphire lasers. We analyzed the power and frequency bandwidth of THz radiation emitted from these devices as a function of bias voltage, pump pulse duration and pump pulse location. We show that the mechanisms limiting the THz power emitted from photoconductive switches fall into two regimes: when illuminated with short duration (<40 fs) laser pulses the energy distribution of the Gaussian pulses constrains the emitted power, while for long (>40 fs) pulses, screening is the primary power-limiting mechanism. A discussion of the dynamics of bias field screening in the gap region is presented. The emitted terahertz power was found to be enhanced when the exciting laser pulse was in close proximity to the anode of the photoconductive emitter, in agreement with experimental results. We show that this enhancement arises from the electric field distribution within the emitter combined with a difference in the mobilities of electrons and holes.Comment: 7 pages, 7 figure

    Radio Band Observations of Blazar Variability

    Full text link
    The properties of blazar variability in the radio band are studied using the unique combination of temporal resolution from single dish monitoring and spatial resolution from VLBA imaging; such measurements, now available in all four Stokes parameters, together with theoretical simulations, identify the origin of radio band variability and probe the characteristics of the radio jet where the broadband blazar emission originates. Outbursts in total flux density and linear polarization in the optical-to-radio bands are attributed to shocks propagating within the jet spine, in part based on limited modeling invoking transverse shocks; new radiative transfer simulations allowing for shocks at arbitrary angle to the flow direction confirm this picture by reproducing the observed centimeter-band variations observed more generally, and are of current interest since these shocks may play a role in the gamma-ray flaring detected by Fermi. Recent UMRAO multifrequency Stokes V studies of bright blazars identify the spectral variability properties of circular polarization for the first time and demonstrate that polarity flips are relatively common. All-Stokes data are consistent with the production of circular polarization by linear-to-circular mode conversion in a region that is at least partially self-absorbed. Detailed analysis of single-epoch, multifrequency, all-Stokes VLBA observations of 3C 279 support this physical picture and are best explained by emission from an electron-proton plasma.Comment: 6 pages, 5 figures, uses, jaa.sty. Invited talk presented at the conference Multifrequency Variability of Blazars, Guangzhou, China, September 22-24, 2010. To appear in J. Astrophys. Ast

    The twisted fourth moment of the Riemann zeta function

    Full text link
    We compute the asymptotics of the fourth moment of the Riemann zeta function times an arbitrary Dirichlet polynomial of length T1/11−ϵT^{{1/11} - \epsilon}Comment: 28 pages. v2: added reference

    Sanitizing the fortress: protection of ant brood and nest material by worker antibiotics

    Get PDF
    Social groups are at particular risk for parasite infection, which is heightened in eusocial insects by the low genetic diversity of individuals within a colony. To combat this, adult ants have evolved a suite of defenses to protect each other, including the production of antimicrobial secretions. However, it is the brood in a colony that are most vulnerable to parasites because their individual defenses are limited, and the nest material in which ants live is also likely to be prone to colonization by potential parasites. Here, we investigate in two ant species whether adult workers use their antimicrobial secretions not only to protect each other but also to sanitize the vulnerable brood and nest material. We find that, in both leaf-cutting ants and weaver ants, the survival of the brood was reduced and the sporulation of parasitic fungi from them increased, when the workers nursing them lacked functional antimicrobial-producing glands. This was the case for both larvae that were experimentally treated with a fungal parasite (Metarhizium) and control larvae which developed infections of an opportunistic fungal parasite (Aspergillus). Similarly, fungi were more likely to grow on the nest material of both ant species if the glands of attending workers were blocked. The results show that the defense of brood and sanitization of nest material are important functions of the antimicrobial secretions of adult ants and that ubiquitous, opportunistic fungi may be a more important driver of the evolution of these defenses than rarer, specialist parasites

    Diffusion in scale-free networks with annealed disorder

    Full text link
    The scale-free (SF) networks that have been studied so far contained quenched disorder generated by random dilution which does not vary with the time. In practice, if a SF network is to represent, for example, the worldwide web, then the links between its various nodes may temporarily be lost, and re-established again later on. This gives rise to SF networks with annealed disorder. Even if the disorder is quenched, it may be more realistic to generate it by a dynamical process that is happening in the network. In this paper, we study diffusion in SF networks with annealed disorder generated by various scenarios, as well as in SF networks with quenched disorder which, however, is generated by the diffusion process itself. Several quantities of the diffusion process are computed, including the mean number of distinct sites visited, the mean number of returns to the origin, and the mean number of connected nodes that are accessible to the random walkers at any given time. The results including, (1) greatly reduced growth with the time of the mean number of distinct sites visited; (2) blocking of the random walkers; (3) the existence of a phase diagram that separates the region in which diffusion is possible from one in which diffusion is impossible, and (4) a transition in the structure of the networks at which the mean number of distinct sites visited vanishes, indicate completely different behavior for the computed quantities than those in SF networks with quenched disorder generated by simple random dilution.Comment: 18 pages including 8 figure

    Daylight quantum key distribution over 1.6 km

    Get PDF
    Quantum key distribution (QKD) has been demonstrated over a point-to-point ∼1.6\sim1.6-km atmospheric optical path in full daylight. This record transmission distance brings QKD a step closer to surface-to-satellite and other long-distance applications.Comment: 4 pages, 2 figures, 1 table. Submitted to PRL on 14 January 2000 for publication consideratio

    Cell patterning on photolithographically defined parylene-C:SiO2 substrates

    Get PDF
    Cell patterning platforms support broad research goals, such as construction of predefined in vitro neuronal networks and the exploration of certain central aspects of cellular physiology. To easily combine cell patterning with Multi-Electrode Arrays (MEAs) and silicon-based ‘lab on a chip’ technologies, a microfabrication-compatible protocol is required. We describe a method that utilizes deposition of the polymer parylene-C on SiO(2 )wafers. Photolithography enables accurate and reliable patterning of parylene-C at micron-level resolution. Subsequent activation by immersion in fetal bovine serum (or another specific activation solution) results in a substrate in which cultured cells adhere to, or are repulsed by, parylene or SiO(2) regions respectively. This technique has allowed patterning of a broad range of cell types (including primary murine hippocampal cells, HEK 293 cell line, human neuron-like teratocarcinoma cell line, primary murine cerebellar granule cells, and primary human glioma-derived stem-like cells). Interestingly, however, the platform is not universal; reflecting the importance of cell-specific adhesion molecules. This cell patterning process is cost effective, reliable, and importantly can be incorporated into standard microfabrication (chip manufacturing) protocols, paving the way for integration of microelectronic technology
    • …
    corecore