24 research outputs found

    Development, characterization, and stability of O/W pepper nanoemulsions produced by high-pressure homogenization

    Get PDF
    Interest in the utilization of bioactive plant compounds in foods has increased due to their biochemical activities (antioxidant, antimicrobial, etc.), and as alternatives in the reduction of the use of high concentrations of chemical substances. However, some of these additives are hydrophobic, thus being harder to disperse into the food matrix, which is generally water-based. A good alternative is the use of low concentrations of these compounds as nanoemulsions. The objective of the present study was to develop oil-in-water nanoemulsions containing dedo-de-moça pepper extract for food applications. Research in the development of these nanoemulsions was carried out using a high-speed homogenizer, followed by a high-pressure homogenizer. The influence of the following parameters was assessed: type and concentration of surfactants, hidrophilic-lipophilic balance, lipid/aqueous phase ratio, surfactant/oil ratio, pepper extract composition in nanoemulsion, and processing conditions. Nanoemulsions were evaluated by environmental (centrifugal and thermal) and storage stabilities, characterized by average droplet size and -potential measurements, color, interfacial tension, atomic force, and cryo-scanning electron microscopy. Those with average droplet size between 132 ± 2.0 and 145 ± 1.0 nm were developed depending on working pressure and number of cycles; -potential was around 36.71 ± 0.62 mV and the best nanoemulsion was stable to centrifugation and most of the thermal stresses. Droplets were characterized with cryo-scanning electron microscopy as being spherical, homogeneous, and stable, and remained stable when stored at 4 °C and room temperature for over 120 days. The pepper nanoemulsion, developed in the present study, has potential applications in the food industry.The first author gratefully acknowledges the CNPq and CAPES (National Council for Scientific and Technological Development, Program Science without Boarder) for the BSWE^ PhD (Process 236877/2012-1) fellowship, and CAPES for the national PhD fellowship. The last author acknowledges the São Paulo Research Foundation (FAPESP) Brazil, for the grant (CEPID-FoRC, 2013/07914-8).info:eu-repo/semantics/publishedVersio

    CUBES: a UV spectrograph for the future

    Get PDF
    In spite of the advent of extremely large telescopes in the UV/optical/NIR range, the current generation of 8-10m facilities is likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (>40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R>20,000, although a lower-resolution, sky-limited mode of R ~ 7,000 is also planned. CUBES will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the Phase B dedicated to detailed design and construction. First science operations are planned for 2028. In this paper, we briefly describe the CUBES project development and goals, the main science cases, the instrument design and the project organization and management

    CUBES : the Cassegrain U-band Efficient Spectrograph

    Get PDF
    In the era of Extremely Large Telescopes, the current generation of 8-10m facilities are likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (> 40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R >20, 000 (with a lower-resolution, sky-limited mode of R ~7, 000). With the design focusing on maximizing the instrument throughput (ensuring a Signal to Noise Ratio (SNR) ~20 per high-resolution element at 313 nm for U ~18.5 mag objects in 1h of observations), it will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the detailed design and construction phase. First science operations are planned for 2028
    corecore