115 research outputs found

    Reliability Analysis for the Advanced Electric Power Grid: From Cyber Control and Communication to Physical Manifestations of Failure

    Get PDF
    The advanced electric power grid is a cyber-physical system comprised of physical components, such as transmission lines and generators, and a network of embedded systems deployed for their cyber control. The objective of this paper is to qualitatively and quantitatively analyze the reliability of this cyber-physical system. The original contribution of the approach lies in the scope of failures analyzed, which crosses the cyber-physical boundary by investigating physical manifestations of failures in cyber control. As an example of power electronics deployed to enhance and control the operation of the grid, we study Flexible AC Transmission System (FACTS) devices, which are used to alter the flow of power on specific transmission lines. Through prudent fault injection, we enumerate the failure modes of FACTS devices, as triggered by their embedded software, and evaluate their effect on the reliability of the device and the reliability of the power grid on which they are deployed. The IEEE118 bus system is used as our case study, where the physical infrastructure is supplemented with seven FACTS devices to prevent the occurrence of four previously documented potential cascading failures

    Proposing the use of partial AUC as an adjunctive measure in establishing bioequivalence between deltoid and gluteal administration of long-acting injectable antipsychotics

    Get PDF
    The maximum plasma concentration (Cmax) and the area under the plasma concentration–time curve (AUC) are commonly used to establish bioequivalence between two formulations of the same oral medication. Similarly, these pharmacokinetic parameters have also been used to establish bioequivalence between two sites of administration for the same injectable formulation. However, these conventional methods of establishing bioequivalence are of limited use when comparing modified-release formulations of a drug, particularly those with rates of absorption that are amenable to change with the site of injection. Inherent differences in the rate of absorption can result in clinically significant differences in early exposure and drug response. Here, we propose the use of the partial AUC (pAUC) as a measure of early exposure to aid in the assessment of bioequivalence between the gluteal and the deltoid site of administration for long-acting injectable antipsychotics

    Comparison of two recombinant erythropoietin formulations in patients with anemia due to end-stage renal disease on hemodialysis: A parallel, randomized, double blind study

    Get PDF
    BACKGROUND: Recombinant human erythropoietin (EPO) is used for the treatment of last stage renal anemia. A new EPO preparation was obtained in Cuba in order to make this treatment fully nationally available. The aim of this study was to compare the pharmacokinetic, pharmacodynamic and safety properties of two recombinant EPO formulations in patients with anemia due to end-stage renal disease on hemodialysis. METHODS: A parallel, randomized, double blind study was performed. A single 100 IU/Kg EPO dose was administered subcutaneously. Heberitro (Heber Biotec, Havana, formulation A), a newly developed product and Eprex (CILAG AG, Switzerland, formulation B), as reference treatment were compared. Thirty-four patients with anemia due to end-stage renal disease on hemodialysis were included. Patients had not received EPO previously. Serum EPO level was measured by enzyme immunoassay (EIA) during 120 hours after administration. Clinical and laboratory variables were determined as pharmacodynamic and safety criteria until 216 hours. RESULTS: Both groups of patients were similar regarding all demographic and baseline characteristics. EPO kinetics profiles were similar for both formulations; the pharmacokinetic parameters were very close (i.e., AUC: 4667 vs. 4918 mIU.h/mL; Cmax: 119.1 vs. 119.7 mIU/mL; Tmax: 13.9 vs. 18.1 h; half-life, 20.0 vs. 22.5 h for formulations A and B, respectively). The 90% confidence intervals for the ratio between both products regarding these metrics were close to the 0.8 – 1.25 range, considered necessary for bioequivalence. Differences did not reach 20% in any case and were not determined by a formulation effect, but probably by a patients' variability effect. Concerning pharmacodynamic features, a high similitude in reticulocyte counts increments until 216 hours and the percentage decrease in serum iron until 120 hours was observed. There were no differences between formulations regarding the adverse events and their intensity. The more frequent events were pain at injection site (35.3%) and hypertension (29%). Additionally, further treatment of the patients with the study product yielded satisfactory increases in hemoglobin and hematocrit values. CONCLUSION: The formulations are comparable. The newly developed product should be acceptable for long-term application

    Substations and switching stations

    No full text

    Compact models of nonuniform lines for earthing-system analysis

    No full text

    The Two Main Goals of Bioequivalence Studies.

    No full text
    The principal goal of bioequivalence (BE) investigations has crucial importance and has been the subject of extensive discussions. BE studies are frequently considered to serve as procedures for sensitive discrimination. The BE investigation should be able to provide methods and conditions sensitively identifying relevant differences between drug products if such differences in fact exist. Alternatively, BE studies can be deemed as surrogates of clinical investigations assessing therapeutic equivalence. Bioequivalent drug products will be provided to patients for their benefits. Both points of view are valid since they represent two aspects of product performance. It has been argued that both should be equally sustained and applied. In practice, however, they collide when regulatory conditions and statements are developed. For instance, some regulators prefer to conduct BE studies following single drug administrations since these conditions are considered to provide the highest sensitivity of discrimination between pharmacokinetic profiles and thus, a product's in-vivo performance. Others suggest that, at least for modified-release products, BE investigations should be performed in the steady state since it represents clinical conditions. Preference for one point of view or the other pervades other regulatory statements including suggestions for subjects to be selected in studies and pharmacokinetic measures to be evaluated. An overview is provided on the disturbing inconsistency of statements within and between regulations. It is argued that harmonization would be highly desirable, and relevant recommendations are offered

    Metrics for the evaluation of bioequivalence of modified-release formulations.

    No full text
    Metrics are discussed which are used for the evaluation of bioequivalence of modified-release formulations. In order to ensure the therapeutic equivalence of the compared drug products, it would be important to contrast measures which are additional to area under the curve (AUC) and C (max). For delayed-release products, the assessment of lag times is informative. For extended-release dosage forms, comparisons of the half-value duration and the midpoint duration time are useful. For some modified-release formulations with complicated, multiphasic concentration profiles, the comparison of partial AUCs is important. In determinations of the bioequivalence of extended-release dosage forms, investigations performed under steady-state conditions rather than after single dosing can yield enhanced probability of therapeutic equivalence, especially with substantial accumulation of the drug products. In steady-state investigations of bioequivalence, evaluation of the trough concentration and of the peak trough fluctuation is informative
    • 

    corecore