44 research outputs found

    Experimental measurements in plane Couette-Poiseuille flow: Dynamics of the large- and small-scale flow

    Get PDF
    In this paper we experimentally study the transitional range of Reynolds numbers in plane Couette–Poiseuille flow, focusing our attention on the localized turbulent structures triggered by a strong impulsive jet and the large-scale flow generated around these structures. We present a detailed investigation of the large-scale flow and show how its amplitude depends on Reynolds number and amplitude perturbation. In addition, we characterize the initial dynamics of the localized turbulent spot, which includes the coupling between the small and large scales, as well as the dependence of the advection speed on the large-scale flow generated around the spot. Finally, we provide the first experimental measurements of the large-scale flow around an oblique turbulent band

    The scenario of two-dimensional instabilities of the cylinder wake under EHD forcing: A linear stability analysis

    Get PDF
    We propose to study the stability properties of an air flow wake forced by a dielectric barrier discharge (DBD) actuator, which is a type of electrohydrodynamic (EHD) actuator. These actuators add momentum to the flow around a cylinder in regions close to the wall and, in our case, are symmetrically disposed near the boundary layer separation point. Since the forcing frequencies, typical of DBD, are much higher than the natural shedding frequency of the flow, we will be considering the forcing actuation as stationary. In the first part, the flow around a circular cylinder modified by EHD actuators will be experimentally studied by means of particle image velocimetry (PIV). In the second part, the EHD actuators have been numerically implemented as a boundary condition on the cylinder surface. Using this boundary condition, the computationally obtained base flow is then compared with the experimental one in order to relate the control parameters from both methodologies. After validating the obtained agreement, we study the Hopf bifurcation that appears once the flow starts the vortex shedding through experimental and computational approaches. For the base flow derived from experimentally obtained snapshots, we monitor the evolution of the velocity amplitude oscillations. As to the computationally obtained base flow, its stability is analyzed by solving a global eigenvalue problem obtained from the linearized Navier–Stokes equations. Finally, the critical parameters obtained from both approaches are compared

    Granular size segregation in underwater sand ripples

    Full text link
    We report an experimental study of a binary sand bed under an oscillating water flow. The formation and evolution of ripples is observed. The appearance of a granular segregation is shown to strongly depend on the sand bed preparation. The initial wavelength of the mixture is measured. In the final steady state, a segregation in volume is observed instead of a segregation at the surface as reported before. The correlation between this phenomenon and the fluid flow is emphasised. Finally, different ``exotic'' patterns and their geophysical implications are presented.Comment: 8 page

    Boundary Limitation of Wavenumbers in Taylor-Vortex Flow

    Full text link
    We report experimental results for a boundary-mediated wavenumber-adjustment mechanism and for a boundary-limited wavenumber-band of Taylor-vortex flow (TVF). The system consists of fluid contained between two concentric cylinders with the inner one rotating at an angular frequency Ω\Omega. As observed previously, the Eckhaus instability (a bulk instability) is observed and limits the stable wavenumber band when the system is terminated axially by two rigid, non-rotating plates. The band width is then of order ϵ1/2\epsilon^{1/2} at small ϵ\epsilon (ϵ≡Ω/Ωc−1\epsilon \equiv \Omega/\Omega_c - 1) and agrees well with calculations based on the equations of motion over a wide ϵ\epsilon-range. When the cylinder axis is vertical and the upper liquid surface is free (i.e. an air-liquid interface), vortices can be generated or expelled at the free surface because there the phase of the structure is only weakly pinned. The band of wavenumbers over which Taylor-vortex flow exists is then more narrow than the stable band limited by the Eckhaus instability. At small ϵ\epsilon the boundary-mediated band-width is linear in ϵ\epsilon. These results are qualitatively consistent with theoretical predictions, but to our knowledge a quantitative calculation for TVF with a free surface does not exist.Comment: 8 pages incl. 9 eps figures bitmap version of Fig

    Mean flow and spiral defect chaos in Rayleigh-Benard convection

    Get PDF
    We describe a numerical procedure to construct a modified velocity field that does not have any mean flow. Using this procedure, we present two results. Firstly, we show that, in the absence of mean flow, spiral defect chaos collapses to a stationary pattern comprising textures of stripes with angular bends. The quenched patterns are characterized by mean wavenumbers that approach those uniquely selected by focus-type singularities, which, in the absence of mean flow, lie at the zig-zag instability boundary. The quenched patterns also have larger correlation lengths and are comprised of rolls with less curvature. Secondly, we describe how mean flow can contribute to the commonly observed phenomenon of rolls terminating perpendicularly into lateral walls. We show that, in the absence of mean flow, rolls begin to terminate into lateral walls at an oblique angle. This obliqueness increases with Rayleigh number.Comment: 14 pages, 19 figure
    corecore