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In this paper we experimentally study the transitional range of Reynolds numbers in
plane Couette–Poiseuille flow, focusing our attention on the localized turbulent structures
triggered by a strong impulsive jet and the large-scale flow generated around these
structures. We present a detailed investigation of the large-scale flow and show how
its amplitude depends on Reynolds number and amplitude perturbation. In addition,
we characterize the initial dynamics of the localized turbulent spot, which includes the
coupling between the small and large scales, as well as the dependence of the advection
speed on the large-scale flow generated around the spot. Finally, we provide the first
experimental measurements of the large-scale flow around an oblique turbulent band.

Key words: transition to turbulence

1. Introduction

Transition to turbulence in wall-bounded shear flows is a classical problem of both
fundamental and practical interest, which, however, has not yet been fully understood.
The current state of knowledge can be found in recent reviews (Pomeau 2015;
Barkley 2016; Manneville 2017; Eckhardt 2018; Tuckerman, Chantry & Barkley 2020).
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Here, we experimentally investigate the transitional range of Reynolds numbers in plane
Couette–Poiseuille flow, an example of a shear flow, which has received little attention up
to now (see Klotz et al. (2017) and references therein). Specifically, the Couette–Poiseuille
velocity profile with zero-mean advection velocity (similar to our case) was investigated
by Huey & Williamson (1974) and Tsanis & Leutheusser (1988), who concentrated
mainly on fully developed turbulence. In addition, Tsanis & Leutheusser (1988) stated
that the transition from the laminar to the turbulent state occurs at Re ≈ 900, but without
discussing this result.

In this context Klotz & Wesfreid (2017) reported the first and detailed measurements
of the response of shear flow to an impulsive well-controlled perturbation that triggers
localized turbulent spots. Two possible types of evolution were observed. The first is
characterized by an initial growth of a localized spot, which is eventually followed by
an exponential decay. This type of evolution was quantitatively compared with linear
transient growth theory (see also Schmid & Henningson 2001) calculated for plane
Couette–Poiseuille flow. The second type of behaviour corresponds to a self-sustained
turbulent spot with postponed decay that results in a non-deterministic lifetime. However,
in either of these two different behaviours, localized spots can eventually decay. We call the
second type of evolution ‘self-sustained’ because streaks within the turbulent spot show
non-trivial and nonlinear behaviour (including waviness of the streaks), which is similar to
a self-sustained cycle described by Waleffe (1997) and experimentally observed by Duriez,
Aider & Wesfreid (2009); see also the recent work of Dessup et al. (2018) for an analogous
process in Taylor–Couette flow.

However, we recall that Waleffe’s original model can describe only the temporal
dynamics of a local turbulent structure (temporal aspect of transition to turbulence).
Results obtained in long pressure-driven pipes in the transitional range of Reynolds
numbers demonstrated that the characteristic lifetime of a single turbulent spot (called
a puff) increases exponentially or even superexponentially (Hof et al. 2008; Avila,
Willis & Hof 2010; Kuik, Poelma & Westerweel 2010; Mukund & Hof 2018) as the
Reynolds number is increased, which implies that a single puff is a transient structure
with finite characteristic lifetime. An explanation for truly self-sustained turbulence for
an asymptotically large time horizon in the transitional range of Reynolds numbers
requires one also to take into account the spatial aspect of the transition to turbulence
(Pomeau 1986). This point has been further elucidated by Manneville (2009), who showed
that the transformation from local temporal chaos to global sustained spatiotemporal
chaos occurs independently of whether the lifetime of the local structures diverges
or not.

Based on the single-puff statistics in pipe flow, Avila et al. (2011) proposed that an
asymptotically self-sustained turbulence can be reached at a Reynolds number at which
the puff decay is compensated by puff splitting (representing a spatial proliferation of
the turbulent phase into the laminar flow). Recently, Mukund & Hof (2018) generalized
this argument based on single-puff statistics to the case of fully intermittent flow, in
which several puffs can mutually interact. In addition, Lemoult et al. (2016) reported
for one-dimensional Couette flow that, in the vicinity of the threshold of asymptotically
self-sustained turbulence, a turbulent phase follows a continuous phase transition and can
be described by the directed percolation statistical model. Chantry, Tuckerman & Barkley
(2017) observed similar critical behaviour in the domain extended in the two wall-parallel
dimensions using a simplified model of shear flow reduced to only four modes along the
wall-normal direction.
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Measurements in plane Couette–Poiseuille flow

One important spatial aspect of the transition to turbulence in wall-bounded shear flows
is the existence of large-scale flow induced around turbulent structures. This large-scale
flow is related to the flow generated by the Reynolds stresses induced by nonlinearity of
the Navier–Stokes equation, as postulated by Hayot & Pomeau (1994). The modification
of the laminar flow around a turbulent spot was observed by Henningson & Alfredsson
(1987), Henningson (1989), Henningson & Kim (1991), Lundbladh & Johansson (1991)
and Tillmark (1995). However, at the time, the main attention was focused on the linear
stability of the modified laminar flow (Henningson & Alfredsson 1987), which possibly
might explain the spanwise growth of the turbulent spot (called growth by destabilization
by Gad-El-Hak, Blackwelderf & Riley (1981) and Riley & Gad-El-Hak (1985)).

It is now known that the large-scale flow generated around a localized spot has a
quadrupole topology and extends far into the laminar region (Schumacher & Eckhardt
2001; Lagha & Manneville 2007; Duguet & Schlatter 2013; Brand & Gibson 2014; Wang
et al. 2020). For plane Couette flow, it has been demonstrated that the front between the
laminar and turbulent regions is oblique along the wall-normal direction, where nearly
laminar flow near one wall faces locally turbulent flow on the opposite wall (Coles 1965;
Lundbladh & Johansson 1991; Barkley & Tuckerman 2007; Duguet & Schlatter 2013).
These are overhang regions, where the streamwise velocity profile averaged over the
wall-normal direction is non-zero. For a localized turbulent spot, these regions lead to
streamwise flow through upstream and downstream fronts towards the spot (Rolland 2014).
Furthermore, measurements in boundary layer flow established that the wall pressure
within the turbulent spot is lower than that in the laminar region at some distance upstream
and downstream (Mautner & Van Atta 1982). By assuming scale separation between
the large and small scales of the shear flow, the incompressibility of both scales can be
considered independently (Duguet & Schlatter 2013). The incompressibility of the large
scales implies that the streamwise flow through the laminar–turbulent interface towards
the spot must be accompanied by a spanwise velocity component from the spot. This flow
topology induces the quadrupolar large-scale flow.

The first experimental evidence of quadrupolar large-scale flow in shear flows was
reported for plane Poiseuille flow by Lemoult, Aider & Wesfreid (2013) and its full
inclined three-dimensional structure was measured by Lemoult et al. (2014). Other
examples of experimental measurements in plane Couette flow were shown by Couliou
& Monchaux (2015, 2017), where the role of large-scale flow in spanwise spreading
of the turbulent spot was investigated. In addition, a similar quadrupolar topology was
numerically observed around localized exact coherent structures in both plane Couette
and plane Poiseuille flows (Brand & Gibson 2014; Zammert & Eckhardt 2014), as well
as around the nearly optimal wavepacket after the streak’s breakdown and transition to
turbulence (Cherubini et al. 2010).

We note that the large-scale flow (equivalently drift flow) around hydrodynamic
structures was first widely studied in Rayleigh–Bénard convection. Motivated by the
concept of phase turbulence in convection at low Prandtl number, many studies
investigated the influence of defects and deformations in periodic structures (Cross &
Hohenberg 1993). Croquette & Pocheau (1984) and Croquette et al. (1986) observed
experimentally a large-scale flow generated by distortions of the basic parallel rolls
structure. Such a velocity field is driven by inhomogeneities in the wavevector, and
tends to convect the roll pattern. Furthermore, Siggia & Zippelius (1981a) observed that
the defects induce wall-normal vorticity with a dipole structure localized around the
dislocation core. This wall-normal vorticity (associated with the large-scale flow) was then
included as an additional dynamical variable in the coupled nonlinear amplitude equations
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governing the slow dynamics of the pattern (Siggia & Zippelius 1981b; Greenside, Cross &
Coughran 1988). In addition, Newell, Passot & Lega (1993) proposed another theoretical
description based on the heuristic model that incorporates a non-local mean velocity
generated by the gradient of the phase perturbation, which was then confirmed by a few
quantitative experiments (Pocheau & Daviaud 1997; Chen 2004).

For the case of the transitional wall-bounded shear flows in a cell extended in two
directions (i.e. pipe flow is excluded), the turbulent phase shows a tendency to form oblique
turbulent bands over a finite range of Reynolds numbers (Manneville 2016; Tuckerman
et al. 2020). This was first observed experimentally in Taylor–Couette (equivalently
circular Couette) configuration with the outer cylinder rotating faster than the inner one
(Coles 1965), where the turbulent region took the form of a helix embedded in an otherwise
laminar flow. Subsequently, a substantial part of the parameter space spanned by two
independent parameters (Reynolds numbers based on the inner and outer cylinders) was
investigated in detail by Andereck, Liu & Swinney (1986). Later, Prigent et al. (2002,
2003) observed similar oblique structures in plane Couette flow, which demonstrated
the similarity between plane and circular Couette flows. The oblique orientation of the
turbulent band can be explained by the incompressibility of the large-scale flow as shown
by Duguet & Schlatter (2013). Recently, Manneville (2018) also proposed to include into
the original Waleffe model the influence of the large-scale flow on the small scales, which
in turn can break the spanwise symmetry of the modified model and allows one to account
for the oblique structures.

In fact, oblique bands have been observed for a large number of shear flow examples,
such as plane Couette (Prigent et al. 2002, 2003; Barkley & Tuckerman 2005, 2007;
Duguet, Schlatter & Henningson 2010; Philip & Manneville 2011; Tuckerman & Barkley
2011; Lu et al. 2019), plane Poiseuille (Tsukahara et al. 2005; Hashimoto et al. 2009;
Fukudome, Iida & Nagano 2010; Fukudome & Iida 2012; Tuckerman et al. 2014; Xiong
et al. 2015; Horii et al. 2017; Tao, Eckhardt & Xiong 2018; Shimizu & Manneville 2019;
Gomé, Tuckerman & Barkley 2020; Xiao & Song 2020), plane Couette–Poiseuille (Klotz
et al. 2017), Taylor–Couette (Coles 1965; Hegseth et al. 1989), Taylor–Dean (Mutabazi
et al. 1990) and annular Poiseuille (Ishida, Duguet & Tsukahara 2016, 2017b) flows. The
same organization persists if the system is subjected to rotation (Tsukahara, Tillmark
& Alfredsson 2010), rotation combined with stratification (Deusebio et al. 2014), wall
roughness (Ishida et al. 2017a) and other effects as well (Brethouwer, Duguet & Schlatter
2012). Similar oblique structures were also reported in the simplified model of shear flow
by Chantry, Tuckerman & Barkley (2016). In addition, Reetz, Kreilos & Schneider (2019)
recently reported on the oblique invariant solution to the Navier–Stokes equation with the
structure resembling turbulent bands. In contrast, oblique bands could not be observed in
boundary layer flow due to the lack of confinement in the wall-normal direction (Khapko
et al. 2016; Tuckerman et al. 2020).

In this paper, we present a detailed experimental investigation of the large-scale flow
(LSF) generated around localized turbulent structures triggered by a strong impulsive
perturbation in plane Couette–Poiseuille flow. We note that, in general, such experimental
measurements are very demanding, which is caused by the weak amplitude of the
large-scale flow. As, in our case, the advection speed of the flow is greatly reduced,
we are able to precisely measure both the spatial structuring and temporal evolution of
the large-scale flow. Herein, § 2 contains the description of our experimental set-up. In
§ 3 we present our results, which include the scale separation of the measured particle
image velocimetry (PIV) velocity fields, the extraction and description of the small- and
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Measurements in plane Couette–Poiseuille flow

〈Vjet〉

Camera

Laser

(a) (b)
Moving belt

∇p

Test section

Figure 1. Experimental configuration: (a) perspective view; (b) cross-section in x, y plane showing the base
flow in the channel. The red dashed line in the inset corresponds to the location y = 0 at the centre of the test
section along the wall-normal direction. The green dashed line in the inset indicates the location of the laser
sheet. Reprinted from Klotz & Wesfreid (2017).

large-scale flows, and characterization of the initial dynamics of the turbulent spot. Finally,
in §§ 5 and 6 we discuss and conclude our results.

2. Experimental set-up

The experimental set-up is presented in figure 1. It consists of two tanks filled with water
and the test section in between, with one moving and one stationary bounding wall. The
moving wall imposes a linear velocity profile (Couette component) that pushes the fluid
in the test section from one tank to the other. At the same time, this driving force induces,
by mass conservation, the parabolic back-flow (Poiseuille component) in the opposite
direction. The superposition of these two components generates plane Couette–Poiseuille
flow with nearly zero mean flux (for details see Klotz & Wesfreid (2017) and Klotz et al.
(2017)).

Hereafter, we will refer to ensemble and time-averaged quantities as 〈 〉N and 〈 〉t,
respectively. We denote the streamwise, wall-normal and spanwise directions as x, y
and z, respectively. Unless otherwise stated, all quantities are non-dimensionalized by
an appropriate combination of belt speed Ubelt and half-gap h. Non-dimensionalized
quantities are marked by ∗ subscript. Reynolds number is defined using belt speed Ubelt,
half-gap h and the kinematic viscosity of water ν, such that Re = Ubelth/ν.

The experimental configuration is analogous to that presented in Klotz & Wesfreid
(2017), i.e. the test-section gap is 2h = 10.8 mm and the aspect ratios of the test section
in the streamwise and spanwise directions are Lx/h ≈ 370 and Lz/h ≈ 96, respectively.
The turbulent spots are triggered by an impulsive (of approximately one advection time
unit �T∗ � 1) water jet in the wall-normal direction through a hole of φ = 0.3h located
on the stationary wall. The point-like character of the perturbation is assured by the small
hole of the jet injector (compare with φ = 0.24h in Klingmann & Alfredsson (1991)). The
ratio between the injected volume and the total volume within the test section is very low
(compare also with Darbyshire & Mullin (1995) and Peixinho & Mullin (2007)) and can
be estimated as Qinjected/Qtest section � A�T∗ × 10−6, where A ∈ (2–82) is the normalized
jet amplitude, defined as the ratio of the time-averaged bulk speed of the jet 〈Vjet〉t and the
belt speed Ubelt. We also note that this jet configuration (i.e. jet ejecting normally to the
bounding wall into the shear flow) is able to generate longitudinal vortices (rolls) as shown
by Klotz, Gumowski & Wesfreid (2019).
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Our base flow is slightly affected by the belt phase motion due to the joining of two
extremities of the belt (see Klotz et al. (2017) for quantitative analysis), which introduces
weak three-dimensionality. In order to filter out the dependence of the base flow on the belt
phase motion, we first measure the reference base flow (without triggering the turbulent
spot) and then we subtract it for each actual realization (with a turbulent spot), keeping the
same phase of belt motion as in the reference flow. Variation of the streamwise velocity
component of the reference base flow is estimated using standard deviation and is lower
than 3.6 % and 0.4 % for the streamwise and spanwise velocity components, respectively.

We present the velocity fluctuations acquired with two-dimensional PIV. The laser
sheet, of around 1 mm thickness, was located parallel to the bounding walls in the
plane y∗ = 0.33 (y∗ = 0 corresponds to the centre of the channel and locations (−1, 1)

indicate the bounding walls; see also the inset of figure 1b). The position y∗ = 0.33 is
the wall-normal location at which maximal amplification of the streaks and the maximum
streamwise fluctuations occur. The same criterion was already successfully used in Klotz
& Wesfreid (2017) for plane Couette–Poiseuille flow and in Lemoult et al. (2013) for
plane Poiseuille flow. The sequence of acquired images was cross-correlated by the Dantec
Dynamic Studio 4.0 software using rectangular interrogation windows 64 pixels × 8 pixels
with 50 % overlap. Velocity fields were measured with an acquisition frequency of f = 10
Hz. The streamwise (u′) and spanwise (w′) velocity fluctuations are obtained in the same
way as described in Klotz & Wesfreid (2017). We acquire 15 different realizations for
Reynolds numbers Re ∈ (380, 480, 520), which make up most of the results presented in
this paper. In addition, in § 4, we present results for Re ∈ (570, 610) in order to illustrate
qualitatively the structure of the large-scale flow at higher Reynolds numbers.

In our plane Couette–Poiseuille configuration, two layers of the counter-moving plastic
belt are required to set the moving boundary condition close to the moving wall. This is
in contrast to the classical plane Couette configuration (Daviaud, Hegseth & Bergé 1992;
Tillmark & Alfredsson 1992), in which only one layer of the plastic belt is needed close to
each wall of the test section. This difference imposes much greater technical difficulties for
plane Couette–Poiseuille experiment, such as stability of the wall-normal dimension and
substantial friction between the two layers of the plastic belt moving in opposite directions.
However, the present configuration enables us to study the flow with a global streamwise
pressure gradient imposed. Moreover, we also note that the characteristic size of the
streaks is slightly smaller in plane Couette–Poiseuille configuration when compared to
plane Couette. This implies that, for the same physical size of the test section, the effective
aspect ratio in plane Couette–Poiseuille flow is larger when compared to the classical plane
Couette configuration.

3. Results

3.1. Premultiplied spectra and scale separation
In figure 2 we illustrate the evolution of the streamwise (u′∗) and spanwise (w′∗) velocity
fluctuations for the jet amplitude A = 60 and Reynolds number Re = 520. The instant
t∗ = 0 corresponds to the moment of injection of water. Streamwise-elongated streaks are
a dominant feature in u′∗ fields for all investigated Reynolds numbers. In comparison, the
magnitude of the w′∗ component is weaker and small-scale features of w′∗ (rolls) are less
pronounced. Instead, the spanwise velocity component is dominated by the large-scale
flow organized along the z direction. The amplitude of the spanwise component of the
large-scale flow reaches its maximal value at the streamwise location close to the centre
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Figure 2. Sequence of eight pairs of images illustrating the evolution of the streamwise (u′∗) and spanwise (w′∗)
velocity fluctuations measured with two-dimensional PIV at y∗ = 0.33 for Re = 520 and A = 60. The instant
t∗ = 0 corresponds to the injection of the water jet. The presented fields are smoothed in time with �t = 3.6
advective time units (Ubelt/h), and along the spanwise direction with �z = 0.6h.

of the turbulent spot and acts outwards from the turbulent spot (expanding direction). On
the upstream and downstream sides of the turbulent spot, the spanwise component of the
large scales is weaker and pointed inwards to the z∗ = 0 axis (contracting directions). We
define the energy evolution of the streamwise and spanwise velocity fluctuations as

Eu′∗(t∗) = Eu′

U2
belt

= �x �z
Sm

∑
x

∑
z

(u′∗(x∗, z∗, t∗))2

2
,

Ew′∗(t∗) = Ew′

U2
belt

= �x �z
Sm

∑
x

∑
z

(w′∗(x∗, z∗, t∗))2

2
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.1)

where Sm = Lx × Lz in the measurement area, and where Lx ∈ (−19.6h, 41.2h) and Lz ∈
(−20.0h, 20.0h). The energy evolutions of u′∗ and w′∗ for Re = 520 and Re = 380 for all
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Ew′∗

t1∗ t2∗ t3∗ t4∗ t5∗ t6∗ t7∗ t8∗ E∗
(a) (b)

t∗ t∗
Figure 3. Energy evolution of (a) streamwise (u′∗) and (b) spanwise (w′∗) velocity fluctuations for
Re = 520 and A = 60. The red dashed curve represents the energy evolution E∗ averaged over
all realizations. In (a) eight subsequent instants are marked by black vertical lines and denoted
by ti∗, where i = 1, 2, . . . , 8. The maximal energy gain Eu′∗ is reached at t6∗. Other instants have
been selected such that Ēu′∗ (t1∗) = 0.2 max(Ēu′∗ ), Ēu′∗ (t2∗) = 0.4 max(Ēu′∗ ), Ēu′∗ (t3∗) = 0.6 max(Ēu′∗ ),
Ēu′∗ (t4∗) = Ēu′∗ (t8∗) = 0.75 max(Ēu′∗ ) and Ēu′∗ (t5∗) = Ēu′∗ (t7∗) = 0.95 max(Ēu′∗ ). The instants t1∗–t8∗
correspond to the instantaneous velocity fields presented in figure 2. The green solid curve represents the
realization during which some additional small patch of turbulence that travelled from the test section was
located within the area of measurements. The green dotted curve corresponds to the same realization as the
solid green curve but after removing this additional patch of turbulence. The red semi-transparent area on each
plot indicates the region bounded by E∗(t∗) ± std(E∗(t∗)).

realizations are shown in figures 3 and 4. Interestingly, the w′∗ component (corresponding
to the perturbation or the rolls) decays faster than the u′∗ component (representing the
response of the shear flow or the streaks). Here, the energy is normalized with the squared
belt speed and not with the initial perturbation energy, as in Klotz & Wesfreid (2017). The
red dashed line corresponds to the energy averaged over all realizations (E∗).

During the initial stage shortly after jet injection, both Eu′∗ and Ew′∗ increase
monotonically in a similar way for each realization, as shown in figures 3 and 4. Small
variations of the energy between different realizations can be explained by the turbulence
within the spot and by the residual velocity fluctuations of the background. The main
difference between Re = 380 (figure 4) and Re = 520 (figure 3) can be observed at later
stages: for Re = 380 all realizations follow typical transient growth behaviour, i.e. initial
amplification followed by subsequent decay. In contrast, for Re = 520 the turbulent spots
do not decay immediately and the energy evolution for different realizations gradually
diverges once the maximal energy gain is reached. The divergence rate is illustrated
using the standard deviation over all realizations for the energy of velocity fluctuations
(shown by the red semi-transparent area in figures 3 and 4). In addition, Re = 380 can be
characterized with lower variability when compared to Re = 520, which can be explained
by the growing sensitivity of the shear flow to the initial perturbation with increasing
Reynolds number.

In figure 3 we mark one realization with the green colour. For this specific realization, a
small additional patch of the turbulence advected through the test section from the water
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Measurements in plane Couette–Poiseuille flow
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2
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Eu′∗
Ew′∗

(×10–3) (×10–4)(a) (b)

t∗ t∗

E∗

Figure 4. Energy evolution of (a) streamwise u′∗ and (b) spanwise w′∗ velocity fluctuations for Re = 380
and A = 82. The red dashed curve represents the energy evolution E∗ averaged over all realizations. The red
semi-transparent area on each plot indicates the region bounded by E∗(t∗) ± std(E∗(t∗)).

tank of the experimental set-up was initially present within the measuring area. The same
realization with this initial patch removed (by considering smaller spanwise extent) is
marked by the green dotted curve.

To show that u′∗ and w′∗ can be decomposed into different scales, we calculate the
spectral premultiplied energy density, defined as

Su′∗(kx∗, kz∗, t∗) = Su′

U2
belt

= |û∗(kx∗, kz∗, t∗)|2 · |k∗|,

Sw′∗(kx∗, kz∗, t∗) = Sw′

U2
belt

= |ŵ∗(kx∗, kz∗, t∗)|2 · |k∗|.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

Here û∗(kx∗, kz∗, t∗) and ŵ∗(kx∗, kz∗, t∗) are the instantaneous two-dimensional Fourier
transforms (with rectangular window and without zero padding) of the streamwise
and spanwise velocity fluctuation fields calculated for a single realization, and |k∗| =√

k2
x∗ + k2

z∗, where kx∗ and kz∗ are the streamwise and spanwise wavenumbers, respectively.
The spectral range of our measurements spans over kx∗ ∈ (−1.83, 1.83) and kz∗ ∈
(−15.26, 15.26), with spectral resolutions of �kx∗ = 0.08 and �kz∗ = 0.10. In terms of
wavelength, these spectral ranges correspond to λx ∈ (3.4h, 78.5h) and λz ∈ (0.4h, 62.8h).
The premultiplied spectra defined in (3.2) are then time- and ensemble-averaged over all
realizations in order to increase the signal-to-noise ratio:

〈Su′∗(kx∗, kz∗)〉t,N = 1
N

N∑
n=1

[
1

t8∗ − t4∗

t8∗∑
t4∗

Su′∗(kx∗, kz∗, t∗)�t∗

]
,

〈Sw′∗(kx∗, kz∗)〉t,N = 1
N

N∑
n=1

[
1

t8∗ − t4∗

t8∗∑
t4∗

Sw′∗(kx∗, kz∗, t∗)�t∗

]
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.3)
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Figure 5. Time- and ensemble-averaged premultiplied spectra for streamwise (a,c) and spanwise (b,d) velocity
fluctuations for Re = 520, A = 60, with data presented using linear (a,b) and logarithmic (c,d) scales. Each
premultiplied spectrum is normalized with the squared belt speed. The green dotted lines mark the axis kz∗ = 0.
The blue dashed-dotted and magenta dashed curves represent |k∗| = 0.32 and |k∗| = 0.86, which correspond

to |λ| = 19.4h and |λ| = 7.3h, respectively (where |λ|/h = 2π/|k∗| = 2π/

√
k2

x∗ + k2
z∗). Only half (kx∗ � 0) of

the premultiplied spectra are shown. The yellow dashed line represents |λ| = 12.8h and |λ| = 15.2h in panels
(a) and (b), respectively. The red thin lines are superposed to facilitate tracking the kx∗ and kz∗ values on the
axes. Note that the scale range of 〈Sw′∗ 〉t,N in panel (b) is 40 times smaller than for 〈Su′∗ 〉t,N in panel (a). In
addition, the scale range of log10(〈Sw′∗ 〉t,N) in panel (d) is one order of magnitude lower than for log10(〈Su′∗ 〉t,N)

in panel (c).

Here t4∗ < t8∗ are selected based on the streamwise velocity fluctuation energy criterion,
such that Ēu′∗(t4∗) = Ēu′∗(t8∗) = 0.75 max(Ēu′∗). This enables us to omit any initial
effects during seed time during which the localized perturbation unpacks. Examples of
time-averaged premultiplied spectra for (Re = 520, A = 60) are presented in figure 5.
Almost all of the spectral energy is contained close to the kx∗ = 0 axis.

Finally, we integrate the premultiplied spectra along azimuth (i.e. Pθ
u′∗

and Pθ
w′∗

) using
the following formulae:

Pθ
u′∗

(|k∗|) = 1
2π

2π∫
0

Su′∗(kx∗, kz∗) dθ∗, Pθ
w′∗

(|k∗|) = 1
2π

2π∫
0

Sw′∗(kx∗, kz∗) dθ∗, (3.4a,b)

where |k∗| = 2π/λ∗ =
√

k2
x∗ + k2

z∗ and θ∗ = arctan(kz∗/kx∗). For azimuthal integration
along θ , the premultiplied spectra needed first to be transformed from Cartesian (kx∗, kz∗)
to polar (|k∗|, θ∗) coordinates using a MATLAB routine. In figure 6(a,b) azimuthally
integrated premultiplied spectra Pθ

u′∗
and Pθ

w′∗
are shown for (Re = 380, 480, 520) and for

the highest considered perturbation amplitude of the jet (A = 82, 66, 60). The normalized
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Measurements in plane Couette–Poiseuille flow
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Figure 6. Time- and ensemble-averaged profiles of the premultiplied spectra of streamwise u′∗ (a,c) and
spanwise w′∗ (b,d) velocity fluctuations, averaged over the azimuthal (θ ) direction. Panels (a,b) and (c,d)
correspond to time averaging over t∗ ∈ (t4∗, t8∗) and t∗ ∈ (t4∗, t6∗), respectively. The dashed magenta and
dashed-dotted blue vertical lines represent |λ| = 7.3h and |λ| = 19.4h. The black dotted vertical line marks
the broad-band peak of small scales at |λ| = 3.1h.

jet amplitude A = 〈Vjet〉t/Ubelt varies for these three different Re only due to the belt speed
Ubelt, as the bulk jet velocity 〈Vjet〉t is kept constant.

In figure 6(a,b) two spectral local minima at λ = 7.3h and λ = 19.4h can be
distinguished. We mark them by magenta dashed and blue dashed-dotted curves in
figures 5–7. In figure 6(c,d) we also present similar premultiplied spectra but integrated for
different time range (t∗ ∈ (t4∗, t6∗)). By comparing the top and bottom rows in figure 6 one
can conclude that the time evolution, in which the spot has non-deterministic dynamics,
does not affect the spectral minima. In addition, this scale separation can be observed
for each realization separately (figure 7a,b) and holds during the considered time interval
(figure 7c,d). This confirms that these values characterize the intrinsic scale separation
of the turbulent spot. The relative magnitude of large scales is more significant for the
spanwise (Pθ

w′∗
) than for the streamwise (Pθ

u′∗
) velocity fluctuation component. This agrees

with the qualitative observations of figure 2, in which the large-scale organization is more
evident in the w′∗ field when compared to the u′∗ field.

Klotz & Wesfreid (2017) already reported that for weak A two different wavelengths
(λz1 = 3.4h and λz1 = 2.1h) of small-scale streaks are observed. In contrast, for the high
jet amplitude reported here, these two wavelengths merge and form a single peak at λz =
3.1h marked by black dotted vertical lines in figures 6 and 7. This value corresponds
to wavenumber kz∗ � 2, which is close to kz∗ = 1.83 predicted by the linear theory of
transient growth for plane Couette–Poiseuille flow (see figure 2a and table 1 in Klotz &
Wesfreid (2017) and references therein).

Note that we also observed the intermediate-scale flow in the range 7.3h < |λ| < 19.4h,
which has the form of large streaks (∼10h) and may be generated by nonlinear
subharmonic interactions. However, we were unable to verify this hypothesis, since our
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Figure 7. Premultiplied spectra profiles for Re = 520 and A = 60 averaged over θ . Panels (a,c) and (b,d)
correspond to the streamwise (u′∗) and spanwise (w′∗) velocity fluctuations, respectively. Panels (a,b) represent
the time-averaged premultiplied spectra profile for each realization (thin solid lines and blue dotted line),
along with ensemble-averaged profile (thick solid red line). Panels (c,d) illustrate the time evolution of
ensemble-averaged profiles of the premultiplied spectra for different instants.

data do not clearly indicate that the wavenumbers of the streaks (small scales) are multiples
of those of large streaks (intermediate scales).

3.2. Characterization of large- and small-scale flows
Having determined proper spectral minima in § 3.1, we separate different scales by
filtering two-dimensional fast Fourier transform (FFT) instantaneous spectra of streamwise
(û∗(kx∗, kz∗, t∗)) and spanwise (ŵ∗(kx∗, kz∗, t∗)) velocity fluctuations with an isotropic
fourth-order Butterworth filter. We use low-pass (|k∗| < 0.32), pass-band (0.32 <

|k∗| < 0.86) and high-pass (|k∗| > 0.86) filters to extract large, intermediate and small
scales, respectively. Then, we reconstruct each scale using the two-dimensional inverse
FFT transform (without spectral cropping). The resulting fields representing the small
and large scales for Re = 520 are shown in figures 8 and 9. The structures of both the
small- and large-scale flows do not change within the range of Reynolds numbers under
consideration: elongated streaks dominate as a small-scale feature (see u′ in figure 8)
whereas the large-scale flow has a quadrupolar shape, as illustrated by the black lines
of isocontours of the wall-normal vorticity (defined as ωy∗ = ∂u′ LSF∗ /∂z∗ − ∂w′ LSF∗ /∂x∗)
in figures 8 and 9. In addition, in figure 9 we observe that the large-scale flow is composed
of both streamwise and spanwise velocity components of similar order of magnitude. The
reason why the streamwise velocity component of the large-scale flow is not as pronounced
as the spanwise component in the evolution of the measured velocity fluctuations (figure 2)
and in premultiplied spectra (figure 5) is simply due to the large amplitude of the
small-scale streamwise streaks, which masks the streamwise large-scale flow. Specifically,
u′∗ and w′∗ are of the order of 10−1 and 10−2, respectively.
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Figure 8. Sequence of eight pairs of images showing small-scale velocity fluctuation fields for Re = 520 and
A = 60. In each pair the top and bottom images correspond to the streamwise (u′∗) and spanwise (w′∗) velocity
fluctuations. The fields are reconstructed by inverse fast Fourier transform for the spectral range |k∗| > 0.86
(|λ| < 7.3h). The time instants and the data used in Fourier filtering are the same as presented in figure 2. In
addition, solid/dashed black lines represent the isocontours of positive/negative wall-normal vorticity of the
large-scale flow reconstructed using the spectral range |k∗| < 0.32 (|λ| > 19.4h). The outermost isocontours
correspond to (ωyh)/Ubelt = ±0.004 and each subsequent inward isocontour is increased/decreased by 0.004.

Taking advantage of large-scale flow separation at λ = 19.4h, we determine for the first
time the dependence of the large-scale flow intensity on Reynolds number Re and jet
amplitude A. For this we calculate the mean energy of premultiplied spectra contained
within the spectral region k∗ < 0.32 (λ > 19.4h). The results are shown in figure 10. The
spectral energy distribution shown in figure 5 is not necessarily symmetric around kz∗ = 0
– this is the case only if the u′∗ and w′∗ fields are perfectly symmetric along the spanwise
direction. For this reason, we consider separately two different spectral regions: kz∗ > 0
and kz∗ < 0. The relative difference between these two regions is small, indicating that the
asymmetry in the spanwise direction (or, in other words, the inclination of the large-scale
flow) of the localized turbulent spot is weak.
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Figure 9. The same as in figure 8 but for large-scale fluctuations of the velocity and wall-normal vorticity
fields. The fields are reconstructed by inverse fast Fourier transform for the spectral range |k∗| < 0.32
(|λ| > 19.4h). The third and sixth rows represent the wall-normal vorticity of the large-scale flow (ωyh)/Ubelt.
The outermost isocontours correspond to (ωyh)/Ubelt = ±0.004 and each subsequent inward isocontour is
increased/decreased by 0.004 (same as in figure 8).
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Figure 10. The amplitude of the mean spectral density of premultiplied spectra that corresponds to the
large-scale flow (|λ| > 19.4h) for streamwise (a) and spanwise (b) velocity fluctuations. We present the modes
in quadrant I (kx∗ > 0, kz∗ > 0) and in quadrant IV (kx∗ > 0, kz∗ < 0) of premultiplied spectra separately, using
squares and plus signs, respectively. Note two different scales on the ordinate axes.

3.3. Initial dynamics of turbulent spot

3.3.1. Coupling between large- and small-scale flows
Here, we consider the initial dynamics of the turbulent spot after the instantaneous jet
injection at t∗ = 0. First, we define the energy of streamwise velocity fluctuations of
small-scale flow u′ SSF∗ as

ESSF
∗ (t∗) = ESSF(t∗)

U2
belt

= �x �z
2Sm

∑
x

∑
z

u′ SSF
∗ (x∗, z∗, t∗)2, (3.5)

where Sm is the measurement area. In contrast to the results in Klotz & Wesfreid (2017),
we normalize the energy with U2

belt and not with the initial energy of the perturbation E0.
Next, we define the centroid position of ESSF∗ corresponding to the instantaneous position
of the barycentre of the streaky structure of the turbulent spot as

xcen∗(t∗) =

∑
x

∑
z

(u′ SSF
∗ (x∗, z∗, t∗))2x∗

∑
x

∑
z

(u′ SSF
∗ (x∗, z∗, t∗))2

. (3.6)

We calculate the instantaneous advection velocity of the spot using the time derivative of
xcen∗(t∗):

ẋcen∗(t∗) = Uadv∗(t∗) = dxcen∗(t∗)
dt

, (3.7)

which can be considered as the group velocity of the perturbation field. Finally, we also
determine the time evolution of the intensity of the large-scale flow around the turbulent
spot by calculating the instantaneous maximal positive value of the large-scale streamwise
velocity fluctuations (shown in figure 9):

ULSF∗ = maxSm(u′ LSF
∗ ). (3.8)

In figure 11 we plot the time evolutions of ESSF∗ , xcen∗, Uadv∗ and max(ULSF∗) for
(Re = 520, A = 60). Each single experimental realization is represented by one thin curve.
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Figure 11. Time evolution of: (a) the energy of small-scale flow ESSF∗ normalized with U2

belt; (b) the centroid
xcen∗ of the small-scale flow; (c) the advection speed Uadv∗ defined as the time derivative of the centroid xcen∗ of
the small-scale flow; and (d) the maximum of the streamwise component of the large-scale flow max(ULSF∗).
Each realization is shown by a thin curve and the thick red curves represent the evolution averaged over all
realizations. The data shown correspond to Re = 520 and A = 60. The vertical dashed magenta line represents
the seed time.

The red thick solid curves correspond to the time evolution of the quantities averaged over
all realizations, which we will refer to as ĒSSF∗ , x̄cen∗, Ūadv∗ and max(ŪLSF∗), respectively.
In figures 12–14 we show the dependence of these ensemble-averaged quantities on Re and
A. Note that in figures 13 and 14 the scale on the ordinate corresponds only to the lowest jet
amplitude (blue curves). Each subsequent amplitude is shifted upwards by 0.3/0.04 units
in figure 13/14 to increase readability. The zero level for each case is presented by the
dotted line in the corresponding colour.

In order to achieve the highest possible signal-to-noise ratio, we analyse the evolution
of the turbulent spot at the time when its structure is the most prominent, i.e. close
to the global energy peak maxt(ĒSSF∗ (t∗)) in figure 12. For each combination of Re
and A, we select the time interval such that 0.75 maxt(ĒSSF∗ ) < ĒSSF∗ (t∗) < maxt(ĒSSF∗ )

(indicated by the thick lines in figures 12–14). Finally, for each (Re, A) pair we calculate
the time-averaged ĒSSF∗ , Ūadv∗ and max(ŪLSF∗) within the indicated time intervals. We
checked that the effect of the advection of the small-scale flow through the rightmost
end of the measurement area does not influence the quantities under consideration in the
selected time interval.

Figure 12 illustrates that the energy of small scales increases monotonically with both
Re and A. Interestingly, in figure 13 the advection velocity is negative during the first
∼20 advection units. This is due to the fact that the analysed structures grow transiently
from zero, and during this initial period the signature of the localized turbulent spot can
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Figure 12. Evolution of ĒSSF∗ for different amplitudes and for Re = 380 (a), Re = 480 (b) and Re = 520 (c).
The thick lines indicate the time interval for which 0.75 maxt(ĒSSF∗ ) < ĒSSF∗ (t∗) < maxt(ĒSSF∗ ).
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Ū
ad

v
∗

t∗ t∗ t∗

(a) (b) (c)

Figure 13. Evolution of Ūadv∗ for different perturbation amplitudes and for Re = 380 (a), Re = 480 (b) and
Re = 520 (c). The scale presented on the ordinate corresponds to the lowest amplitude (blue curves). Each
subsequent amplitude is shifted upwards by 0.3 units with respect to the previous one in order to increase
readability. The zero for each amplitude is marked by the dotted line in the corresponding colour. The thick
lines indicate the same time interval as in figure 12.

0 50 100

0.05

0.10

0.15

0.20

0 50 100 150

0.05

0.10

0.15

0.20

0 50 100 150 200

0.05

0.10

0.15

0.20

t∗ t∗ t∗

(a) (b) (c)

m
ax

 (
Ū
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Figure 14. Evolution of max(ŪLSF∗) for different perturbation amplitudes and for Re = 380 (a), Re = 480 (b)
and Re = 520 (c). Each subsequent amplitude is shifted upwards by 0.04 units with respect to the previous one.
The zero for each amplitude is marked by the dotted line in the corresponding colour. The thick lines indicate
the same time interval as in figure 12.
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Figure 15. Dependence of the intensity of large-scale flow (max(ŪLSF∗)) on the small-scale flow energy
(ĒSSF∗ ). Blue, red and green colours correspond to Re = 380, Re = 480 and Re = 520, respectively. Different
symbols represent different amplitude ranges specified in the legend.

be masked by the small variations of the base flow. We call this initial delay needed for
the external perturbation to settle (and to form the turbulent spot) as the ‘seed time’; we
mark it by the magenta dashed vertical line in figures 11, 13 and 14. Finally, by comparing
figure 12 with figure 14, we note that, for most combinations of Re and A, the maximum
of ĒSSF∗ slightly precedes the maximum of ŪLSF∗.

The dependence of the large-scale flow amplitude (max(ŪLSF∗)) on the energy of
the small-scale flow (ĒSSF∗ ) is plotted in figure 15. Different colours mark different
Reynolds numbers (blue, red and green correspond to Re = 380, Re = 480 and Re =
520, respectively) and different symbols mark different jet amplitudes (the sequence of
diamond, square, triangle, cross and star symbols are in the ascending order of 〈Vjet〉t).
The large-scale flow intensity and the energy of the small-scale flow collapse onto the
straight black dashed line for all realizations.

Finally, in figure 16, we show that the advection speed of the turbulent spot (Ūadv∗)
depends nearly linearly on the large-scale flow intensity (max(ŪLSF∗)). The colours and
symbols are the same as in figure 15. As shown in figure 9 at the right front (upstream with
respect to Poiseuille component of the base flow, see Klotz et al. (2017)), the streamwise
component of the large-scale flow has a negative value, whereas the opposite is true at the
left (downstream) front. However, the positive amplitude on the left of the spot is more
important when compared to the negative counterpart on the right. This asymmetry of the
large-scale flow contributes to the advection of the turbulent spot to the right.

3.3.2. Small-scale flow dynamics
In figure 17 we plot the instantaneous velocity fields measured at t∗ = 112 for Re = 520
and A = 60. The first and second rows correspond to the streamwise and spanwise velocity
fluctuations. The first and second columns illustrate the total velocity fluctuations (u′∗, w′∗)
and small-scale velocity fluctuations (u′

SSF∗, w′
SSF∗), respectively. We estimated the size of

the turbulent spot using the complex demodulation of the streamwise component of the
small-scale flow (see Klotz et al. (2017) for the description of the method), for which the
surrounding laminar background value is used as the threshold. This region is marked by
black and magenta contours. One can observe that the small-scale flow is restricted to the
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Figure 16. Dependence of the advection speed of the turbulent spot (Ūadv∗) on the large-scale flow intensity
(max(ŪLSF∗)). Colours and symbols are the same as in figure 15.

area of the turbulent spot (figure 17b,e), whereas the extent of the large-scale flow is larger
and spans into the laminar region (figure 17a,c).

In addition, by comparing the first and second columns of figure 17, one can observe
that the streamwise velocity component u′∗ is dominated by small-scale flow (streaks),
whereas the spanwise velocity component is dominated by large-scale flow, stretching the
turbulent spot in the vertical direction. This is consistent with the results shown in figures 2
and 5–7. In addition, the black curves in figure 17(b,e) mark the isocontours of w′

SSF∗ =
0.012, which indicates the spatial distribution of the increased intensity of the spanwise
component of the small-scale flow. In figure 17(b) one can observe that the local maxima
of the u′

SSF∗ (streaks) are not spatially correlated with the local maxima of the w′
SSF∗ (rolls),

which suggests a spanwise phase shift between the two velocity components of small-scale
flow.

In addition, to better illustrate the spatial distribution of the small scales, which
corresponds to the broad-band peak |λ| = 3.1h shown in figure 6, we calculate the
envelope of the streamwise and spanwise velocity fluctuations contained within the
spectral range |λ| ∈ (2.1h, 5.1h). The envelope was again calculated using complex
demodulation technique and time-averaged over t∗ ∈ (107, 117). The results are shown
in figure 17(c, f ). Owing to the large difference in amplitudes of u′

SSF∗ and w′
SSF∗, we use

the logarithmic scale of the colour map. One can observe that the amplitude of the streaks
reaches a maximal value around x∗ ≈ 16 (close to the centre of the turbulent spot), whereas
the weak amplitude of w′

SSF∗ tends to be concentrated close to the tips of the turbulent
spot. Finally, in figure 17(g) we show the evolution of the spanwise velocity component
of the small-scale flow ESSF w′∗ . Its peak is approximately one order of magnitude lower
when compared to the peak of the total velocity fluctuations Ew′∗ (figure 3), which again
indicates that the spanwise velocity fluctuations are dominated by the large-scale flow.
However, these two peaks occur at a similar instant, and prior to the peak of the streamwise
velocity component dominated by the streaks. This time delay between the spanwise and
streamwise velocity components can be explained by the dominating role of the lift-up
during the initial dynamics of the turbulent spot. The initial perturbation generates a patch
of turbulence that consists of rolls. These rolls in turn amplify the streaks and decay faster
than the streamwise velocity fluctuations. This problem has been discussed in Waleffe
(1997) and Liu et al. (2021).
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Figure 17. Illustration of the spatial distribution of the small-scale flow and dominant wavelengths |λ| ∈
(2.1h, 5.1h) at t∗ = 112 and for Re = 520 and A = 60. The first and second rows correspond to the
streamwise and spanwise velocity fluctuations, respectively. The first, second and third columns represent PIV
measurements, the spatial distribution of the small-scale flow and the envelope of the scales contained within
the spectral range |λ| ∈ (2.1h, 5.2h). The envelope shown is calculated as time-averaged over t∗ ∈ (107, 117).
Note that the envelope colour map (c, f ) is represented with logarithmic scale. Black and magenta contours
indicate the size of the spot, estimated as the region where the envelope of the streamwise component of
the small-scale flow exceeds the value of the surrounding laminar flow. Black contours in panels (b) and (e)
mark the regions of w′

SSF∗ = 0.012. The evolution of the energy of the spanwise velocity component of the
small-scale flow is shown in the final panel (g).

4. Self-sustained turbulent spots and oblique turbulent band

Finally, we present the velocity fluctuations for Re = 570 (figures 18 and 19) and Re = 610
(figure 20) in order to qualitatively illustrate how the structure of the turbulent spot
and the shape of the large-scale flow change with increasing Reynolds number. The
measurements shown in this section correspond to higher transitional Reynolds numbers,
at which the flow becomes intermittent. These results were acquired further downstream
from the jet perturbation in the region x∗ ∈ (55, 145) and for some time later after the
jet injection (t∗ > 710 for Re = 570 and t∗ = 864 for Re = 610). The first and second
columns of figures 18–20 show the fluctuations of the streamwise u′∗ and spanwise w′∗
velocity component. The first row illustrates the velocity fields measured in the plane
y∗ = 0.33. The second and third rows correspond to the small- and large-scale flows
calculated by filtering instantaneous spatial two-dimensional FFT spectra, in the same
way as in figures 8 and 9. In addition, in the second and third rows we superpose the
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Figure 18. Illustration of a single realization of a self-sustained spot measured for Re = 570 and A = 50. The
first and second columns represent the streamwise u′∗ and spanwise w′∗ velocity fluctuations, respectively. The
first, second and third rows correspond to the PIV measurements, and small-scale and large-scale flow, from
top to bottom. Vector fields imposed on (c–f ) represent the large-scale flow and correspond to the fields shown
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Figure 20. Illustration of an oblique turbulent band measured for Re = 610 and A = 47. For the description

of each panel, see figure 18.

vector fields of the large-scale flow to better illustrate its direction, similar to Barkley &
Tuckerman (2007), Fukudome & Iida (2012) and Duguet & Schlatter (2013).

The structure of the large-scale flow for a self-sustained spot in figure 18(e, f ) is similar
to Re = 520 shown in figure 9. In contrast to lower Reynolds numbers considered before,
the spanwise component of small-scale flow is now more pronounced (compare with
figures 8 and 5 in Klotz & Wesfreid (2017)). The evolution of turbulent spots at the later
stage is not deterministic and their size can change between different realizations, as shown
in figures 18(a,b) and 19, in agreement with the energy evolution after reaching the energy
peak shown in figure 3.

When the Reynolds number is further increased to Re = 610, the structure of the flow
response to the perturbation can change from a doubly localized turbulent spot to a single
oblique band, as shown in figure 20. If this happens, the shape of the large-scale flow
modifies from quadrupolar to oblique. This is presented in figure 20(e, f ), which is the first
experimental evidence of such an oblique large-scale flow. Its orientation is parallel to the
turbulent band and reaches the highest intensity close to the laminar–turbulent interface. In
addition, at the ends of the stripe structure, we observe a large circulatory motion similar
to that in Fukudome & Iida (2012). The inclination angle of the turbulent band (defined
as the separatrix between the positive and negative amplitudes of the velocity component
of the large-scale flow) is comparable for both the streamwise (figure 20e) and spanwise
(figure 20f ) velocity fields. In this case the large-scale flow close to the laminar–turbulent
interface sets along the orientation of the turbulent structures, as indicated by Seki &
Matsubara (2012).

912 A24-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
89

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
85

.1
43

.1
80

.2
30

, o
n 

03
 M

ar
 2

02
1 

at
 0

9:
46

:3
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.1089
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Measurements in plane Couette–Poiseuille flow

5. Discussion

In § 3, we present detailed experimental analysis of the large- and small-scale flow
dynamics. First, we demonstrate that the scale separation of the velocity field holds in
this shear flow. We determine two local minima of spectra at λ = 7.3h and λ = 19.4h (or
equivalently kz∗ = 0.86 and kz∗ = 0.32). In plane Poiseuille flow, Lemoult et al. (2013)
used λ = 5h as the cutoff value to separate the large and small scales. In plane Couette
flow, Duguet & Schlatter (2013) proposed that the cutoff value can be placed anywhere
between λ = 20h and λ = 50h. These spectral ranges are in good agreement with the
values obtained here. We also note that in pipe flow (i.e. in a system with one extended
dimension), Shih, Hsieh & Goldenfeld (2016) used λ = 6.28R in the streamwise direction
(where R is the pipe radius) to extract small-scale dynamics of the turbulence.

Using the scale separation argument, for the first time we extract and characterize
the large- and small-scale flow structures created by a turbulent spot in plane
Couette–Poiseuille flow. Elongated streaks are the dominating small-scale feature and the
large-scale flow has a quadrupolar shape. A similar topology of the large-scale flow has
already been observed for different shear flows, both experimentally – by Lemoult et al.
(2013, 2014) in plane Poiseuille flow and also by Couliou & Monchaux (2015) in plane
Couette flow – as well as numerically – by Schumacher & Eckhardt (2001) in flow with
stress-free boundaries and streamwise forcing sinusoidal in the wall-normal direction, by
Lagha & Manneville (2007), Duguet & Schlatter (2013), Couliou & Monchaux (2018) and
Kashyap, Duguet & Chantry (2020) in plane Couette flow, and by Kashyap et al. (2020)
in Couette–Poiseuille and Poiseuille flows. Breuer & Haritonidis (1990) and Breuer &
Landahl (1990) observed a similar type of structuring even for a boundary layer, which
is spatially evolving shear flow without wall-normal confinement. However, they did not
investigate the large-scale flow in detail.

We note that single-point hot-wire measurements of the turbulent spots have already
been reported for plane Poiseuille flow (e.g. Klingmann & Alfredsson 1991; Klingmann
1992) and for boundary layer flow (e.g. Amini & Lespinard 1982; Bakchinov et al.
1998; Westin et al. 1998). However, single-point measurements do not allow one to study
instantaneously the temporal evolution and spatial structuring of a turbulent spot. More
importantly, in these papers, the large-scale flow was not extracted nor characterized in
detail. In a more recent experiment, Seki & Matsubara (2012) measured with the same
technique the streamwise velocity component across the laminar–turbulent interfaces in
plane Poiseuille flow. In their experiment the turbulence was generated by permanent
obstacles at the entrance of the channel, which is different from the instantaneous jet
perturbation used in Klotz & Wesfreid (2017) and in this work. For this reason, we can
only qualitatively compare their measurements of the streamwise velocity component with
our results. They observed that the time-averaged streamwise velocity in the bulk flow
acts towards the turbulent–laminar interface from both leading and trailing sides. This
observation is similar to the spatial distribution of the large-scale flow shown here in
figures 9, 18(e) and 20(e), in which both the turbulent spot and oblique turbulent band
are compressed in the streamwise direction by the large-scale flow.

Well-controlled instantaneous point-like perturbation, combined with two-dimensional
PIV measurements of the in-plane velocity components, gives us the opportunity to study
both temporal evolution and spatial structuring of the localized turbulent spot. Taking
advantage of the significantly reduced advection speed of the turbulent structures in our
experimental set-up, we study in detail the initial dynamics of the turbulent spot. For this
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we use the energy of the small-scale flow (ĒSSF∗ ), the advection velocity of the turbulent
spot (Ūadv∗) and the amplitude of the large-scale flow intensity (max(ŪLSF∗)) as the main
parameters. First, our results indicate that some finite time is required for the external
perturbation to unpack in order to create the turbulent spot. This initial delay (the seed
time) is equal to approximately 20 advective time units for the range of parameters studied
here. Then, we observe that the energy of the small-scale flow increases monotonically
with both Re and A. Growth with Re is expected based on the transient growth theory
(Schmid & Henningson 2001). Increase with perturbation amplitude A can be explained
by the localized nature of the perturbation: the larger the amplitude perturbation, the more
pronounced is the spatial proliferation of the spot into the laminar region, which results
in increase of streak area and leads to the growth of ĒSSF∗ . In addition, Cherubini et al.
(2011) numerically observed a similar increase of the energy of the flow response to the
perturbation with energy of the amplitude perturbation.

We demonstrate that the large- and small-scale flow intensities are coupled for the range
of parameters under investigation. As illustrated in figure 8 and in the supplementary
movie (available at https://doi.org/10.1017/jfm.2020.1089), each vortex of the large-scale
quadrupole is centred close to the interface of the laminar flow and turbulent spot, at the
location where the streaks have an oblique orientation and lose their continuity along the
streamwise direction. As already discussed in the introduction, the large-scale flow (or
drift flow) in Rayleigh–Bénard convection is generated by the distortion of the pattern
(either through pattern curvature or by the presence of dislocations within the pattern).
Our observations suggest that a similar mechanism (deformation and inhomogeneity of the
streak pattern) can be associated with the large-scale flow generation in the shear flow. We
also show that the advection of the turbulent spot depends on the large-scale flow intensity.
This can be explained by the advection of the small scales (streaks) by the large-scale flow.
At both upstream and downstream sides of the turbulent spot, the streamwise component
of the large-scale flow points towards the centre of the turbulent spot. However, the spatial
distribution of this component is asymmetrical in the streamwise direction (i.e. a higher
value of the intensity downstream with respect to the Poiseuille component of the base
flow and a lower absolute value of the intensity upstream). This streamwise asymmetry
induces the drift flow that advects the turbulent spot.

Regarding the initial dynamics of a turbulent spot, our observations can be summarized
as follows. The external perturbation after the seed time unpacks and as a result the
turbulent spot is formed. During this process the small-scale streaks are amplified through
the lift-up mechanism (or equivalently by transient growth). The energy of the small-scale
flow and the size of the turbulent spot depend not only on the Reynolds number but also
on the amplitude of the perturbation due to spatial localization of the turbulent spot. The
irregularity and obliqueness of the streak pattern induces the large-scale flow, the spatial
distribution of which is asymmetrical in the streamwise direction. This asymmetry in turns
affects the advection velocity of the turbulent spot.

Finally, at higher Reynolds numbers the decay of the turbulent spot becomes postponed
due to the non-trivial dynamics of the small-scale flow. This manifests by the increase
of the amplitude of the spanwise velocity component of the small-scale flow, which is
a signature of the streak destabilization similar to that in Waleffe (1997), Duriez et al.
(2009) and Dessup et al. (2018). After further increase of the Reynolds number, a doubly
localized turbulent spot can change into a single oblique turbulent band. This process is
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also accompanied by the change of the shape of the large-scale flow from quadrupolar to
oblique, with the direction of the flow oriented along the turbulent band. Our direct, precise
and spatial measurements of the large-scale flow are in good agreement with existing
numerical observations (Barkley & Tuckerman 2007; Fukudome & Iida 2012; Duguet
& Schlatter 2013) and confirm the interpretation proposed by Seki & Matsubara (2012)
in their figure 21(b). This is also in contrast to what Coles & Van Atta (1966) suggested in
their early experiments of spirals in Taylor–Couette configuration.

6. Conclusions

We present detailed experimental analysis of the localized turbulent structures triggered
by a strong impulsive perturbation in the transitional range of Reynolds numbers in plane
Couette–Poiseuille flow. In contrast to Klotz & Wesfreid (2017), here we consider a wider
range of jet amplitudes and analyse in detail the large-scale flow induced around localized
turbulent structures. We demonstrate for the first time that the scale separation of velocity
field holds in plane Couette–Poiseuille flow and, using this, we extract the large-scale flow
from our measurements. The greatly reduced advection velocity of the turbulent structures
in our experimental set-up enables us to measure accurately both the spatial structuring
and temporal evolution of the weak large-scale flow, and to quantify experimentally the
dependence of the large-scale flow intensity on the Reynolds number Re and forcing
amplitude A for a localized turbulent spot. We show that the energy of small scales
grows with Reynolds number and with the amplitude of the perturbation. In addition,
we show that the small and large scales are coupled for the range of parameters studied
here. Moreover, we demonstrate that the advection speed of the turbulent spot depends on
the large-scale flow intensity, which can be explained by the asymmetry of the streamwise
component of the large-scale flow. Finally, we extend our analysis for higher Reynolds
numbers, showing the measurements of the self-sustained localized turbulent spot with
postponed decay, and first experimental measurements of the large flow generated around
a single oblique turbulent band – in agreement with the numerical results of Barkley &
Tuckerman (2007), Fukudome & Iida (2012) and Duguet & Schlatter (2013) and with the
interpretation proposed by Seki & Matsubara 2012.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2020.1089.
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Figure 21. Comparison of the flow structure induced by the jet perturbation at the highest considered
amplitude (〈Vjet〉t = 5.63 m s−1) without and with the shear flow (first column for Re = 0 and second
column for Re = 520, respectively). Vorticity fields are normalized with 〈Vjet〉t. The upper row represents
the instantaneous vorticity field at t Vjet/h = 4.2 × 103. The lower row shows the corresponding large-scale
flow obtained by spectral filtering with a low-pass Butterworth filter (|λ| > 7.3h). Note the different scales
in the colour bars. To facilitate the comparison, we mark the maximal values from the first column by black
horizontal lines on the colour bar in the second column.

Appendix. Structure of the flow induced by the jet perturbation without
shear flow (Re = 0)

In order to confirm that the observed quadrupole shape of the large-scale flow is related
to the intrinsic properties of the spot in the shear flow and not to the water jet injection
used as the forcing, we additionally measure the velocity fields generated by the water jet
when the plastic belt is at rest (Re = 0, i.e. without the shear flow) and compare these
fields to the flow structures triggered by the jet perturbation in the presence of the shear
flow for Re = 520 and A = 60. In this appendix the jet speed 〈Vjet〉t � 5.63 m s−1 is used
to define the advective time unit and to normalize the measured velocity, since Ubelt =
0 for Re = 0. In figure 21 we present the instantaneous wall-normal vorticity field ωy
measured at t∗∗ = t Vjet/h = 4.2 × 103 for Re = 0 (first column) and Re = 520 (second
column), respectively. This selected instant is also equivalent to t∗ = t Ubelt/h = 71 for the
case Re = 520. In figure 21(a) the wall-normal vorticity ωy is directly computed from the
measured velocity fields u and w, whereas the field highlighted in figure 21(c) is obtained
from velocity fluctuations u′ and w′ after having subtracted the base flow. Finally, in the
bottom row (figure 21b,d) we present the wall-normal vorticity of the large-scale flow
calculated from the corresponding fields shown in the top row (figure 21a,c) by filtering
with a fourth-order Butterworth low-pass filter (|λ| > 19.4h). The quadrupole is observed
only in the presence of the shear flow, even if the amplitude of the water jet is the same for
both cases. Note that the colour bar scales in the first and second columns are different.
To facilitate the comparison, we mark the maximal values from the first column by black
horizontal lines on the colour bar in the second column.

Using the same procedure as described in § 3.1, we compute for Re = 0 the
premultiplied spectra 〈Su〉t and 〈Sw〉t, which are then averaged over 10 realizations and
in time (0 < t Vjet/h < 4.2 × 103). The results are shown in figure 22. In figure 23 we
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Figure 22. The same as in figure 5 but for the case without the shear flow (Re = 0) and for the highest
amplitude 〈Vjet〉t = 5.63 m s−1. Premultiplied spectra are normalized with 〈Vjet〉t in this case. For reference,
we plot the spectral local minima determined for Re /= 0 as magenta dashed (λ = 7.3h) and blue dashed-dotted
(λ = 19.4h) arcs, respectively. The vertical green line represents the kz∗ = 0 axis.
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Figure 23. Azimuthally averaged profiles for streamwise Pθ
u′ (a) and spanwise Pθ

w′ (b) velocity fluctuations.
The green solid curve corresponds to Re = 0. Also the standard deviation is shown by the green dotted
curves. For comparison, we also present the profiles for Re = 520 and A = 60. All spectra presented here
are normalized with 〈Vjet〉t = 5.63 m s−1. We plot the spectral local minima as the magenta dashed (λ = 7.3h)
and blue dashed-dotted (λ = 19.4h) lines, respectively. The two spectral ranges marked by the grey shaded
regions correspond to |λ| ∈ (2.4h, 4.0h) and |λ| ∈ (32.0h, 60.0h).

compare azimuthally averaged premultiplied spectra Pθ for Re = 0 (green solid curve)
and for Re = 520 (red solid curve). The prominent peak at small scales for Re = 520 is
absent in the case without the shear flow. Moreover, the amplitude of the large scales
averaged over the region marked by the shaded region on the left of figure 23(a,b)
(|λ| ∈ (32.0h, 60.0h)) is more than two orders of magnitude larger when compared to
the case with the belt at rest. The green dotted curves in figure 23(a,b) highlight the
standard deviation computed over 10 different realizations for Re = 0. We consider the
standard deviation in two different spectral regions that are marked by shaded areas: |λ| ∈
(2.4h, 4.0h) corresponding to the small scales and |λ| ∈ (32.0h, 60.0h) that represents
the large scales. The standard deviation of the large and small scales is less than 0.2 %
and 1.4 %, respectively, when compared to the premultiplied amplitudes in the analogous
spectral ranges for the Re = 520 case. The variability of the jet perturbation just after the
jet injection (t∗∗ ≈ 100 or t∗ ≈ 1.7) is less than 0.5 %. We also approximate the upper
bound for the size of the initial perturbation, which is lower than 6h in both streamwise
and spanwise directions.

All the above confirms that the perturbation is well controlled, repeatable, small and
weak (when compared to the energy of the structures induced in the presence of the shear
flow), and that the quadrupole topology is not induced by the jet perturbation.
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