137 research outputs found

    Shear wave velocity prediction using seismic attributes and well log data

    Get PDF
    Formation’s properties can be estimated indirectly using joint analysis of compressional and shear wave velocities. Shear wave data isnot usually acquired during well logging, which is most likely for costsaving purposes. Even if shear data is available, the logging programs provide only sparsely sampled one-dimensional measurements: this informationis inadequate to estimate reservoir rock properties. Thus, if the shear wave data can be obtained using seismic methods, the results can be used across the field to estimate reservoir properties. The aim of this paper is to use seismic attributes for prediction of shear wave velocity in a field located in southern part of Iran. Independent component analysis(ICA) was used to select the most relevant attributes to shear velocity data. Considering the nonlinear relationship between seismic attributes and shear wave velocity, multi-layer feed forward neural network was used for prediction of shear wave velocity and promising results were presented

    Seismic evidence for fluids in fault zones on top of the subducting Cocos Plate beneath Costa Rica

    Get PDF
    Author Posting. © The Authors, 2010. This article is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 181 (2010): 997-1016, doi:10.1111/j.1365-246X.2010.04552.x.In the 2005 TICOCAVA explosion seismology study in Costa Rica we observed crustal turning waves with a dominant frequency of ~10 Hz on a linear array of short-period seismometers from the Pacific Ocean to the Caribbean Sea. On one of the shot records, from Shot 21 in the backarc of the Cordillera Central, we also observed two seismic phases with an unusually high dominant frequency (~20 Hz). These two phases were recorded in the forearc region of central Costa Rica and arrived ~7 s apart and 30 to 40 s after the detonation of Shot 21. We considered the possibility that these secondary arrivals were produced by a local earthquake that may have happened during the active-source seismic experiment. Such high-frequency phases following Shot 21 were not recorded after Shots 22, 23, and 24, all in the backarc of Costa Rica, which might suggest that they were produced by some other source. However, earthquake dislocation models cannot produce seismic waves of such high frequency with significant amplitude. In addition, we would have expected to see more arrivals from such an earthquake on other seismic stations in central Costa Rica. We therefore investigate whether the high-frequency arrivals may be the result of a deep seismic reflection from the subducting Cocos plate. The timing of these phases is consistent with a shear wave from Shot 21 that was reflected as a compressional (SxP) and a shear (SxS) wave at the top of the subducting Cocos slab between 35 and 55 km depth. The shift in dominant frequency from ~10 Hz in the downgoing seismic wave to ~20 Hz in the reflected waves requires a particular seismic structure at the interface between the subducting slab and the forearc mantle in order to produce a substantial increase in reflection coefficients with frequency. The spectral amplitude characteristics of the SxP and SxS phases from Shot 21 are consistent with a very high Vp/Vs ratio of 6 in ~5 m thick, slab-parallel layers. This result suggests that a system of thin shear zones near the plate interface beneath the forearc is occupied by hydrous fluids under near-lithostatic conditions. The overpressured shear zone probably takes up fluids from the downgoing slab, and it may control the lower limit of the seismogenic zone.This work was funded by the US National Science Foundation MARGINS programme

    It’s Not a Bug, It’s a Feature: Functional Materials in Insects

    Full text link
    Over the course of their wildly successful proliferation across the earth, the insects as a taxon have evolved enviable adaptations to their diverse habitats, which include adhesives, locomotor systems, hydrophobic surfaces, and sensors and actuators that transduce mechanical, acoustic, optical, thermal, and chemical signals. Insect‐inspired designs currently appear in a range of contexts, including antireflective coatings, optical displays, and computing algorithms. However, as over one million distinct and highly specialized species of insects have colonized nearly all habitable regions on the planet, they still provide a largely untapped pool of unique problem‐solving strategies. With the intent of providing materials scientists and engineers with a muse for the next generation of bioinspired materials, here, a selection of some of the most spectacular adaptations that insects have evolved is assembled and organized by function. The insects presented display dazzling optical properties as a result of natural photonic crystals, precise hierarchical patterns that span length scales from nanometers to millimeters, and formidable defense mechanisms that deploy an arsenal of chemical weaponry. Successful mimicry of these adaptations may facilitate technological solutions to as wide a range of problems as they solve in the insects that originated them.Insects have evolved manifold optimized solutions to everyday problems. The diversity and precision of their hierarchical material adaptations often outsmart and outperform current man‐made approaches. These materials hence provide an excellent basis for the inspiration of new technological approaches by taking design cues from nature’s solutions.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143760/1/adma201705322.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143760/2/adma201705322_am.pd

    Beitrag zur Kenntnis Genetisch Ungewöhnlicher Herzinsuffizienz und Atypischer Mediaamyloidose

    No full text

    Polyporencephalie

    No full text

    Luxationsfraktur zwischen Atlas und Epistropheus im Kleinkindesalter

    No full text
    corecore