219 research outputs found

    Auger decay, Spin-exchange, and their connection to Bose-Einstein condensation of excitons in Cu_2O

    Full text link
    In view of the recent experiments of O'Hara, et al. on excitons in Cu_2O, we examine the interconversion between the angular-momentum triplet-state excitons and the angular-momentum singlet-state excitons by a spin-exchange process which has been overlooked in the past. We estimate the rate of this particle-conserving mechanism and find a substantially higher value than the Auger process considered so far. Based on this idea, we give a possible explanation of the recent experimental observations, and make certain predictions, with the most important being that the singlet-state excitons in Cu_2O is a very serious candidate for exhibiting the phenomenon of Bose-Einstein condensation.Comment: 4 pages, RevTex, 1 ps figur

    Quantum saturation and condensation of excitons in Cu2_2O: a theoretical study

    Full text link
    Recent experiments on high density excitons in Cu2_2O provide evidence for degenerate quantum statistics and Bose-Einstein condensation of this nearly ideal gas. We model the time dependence of this bosonic system including exciton decay mechanisms, energy exchange with phonons, and interconversion between ortho (triplet-state) and para (singlet-state) excitons, using parameters for the excitonic decay, the coupling to acoustic and low-lying optical phonons, Auger recombination, and ortho-para interconversion derived from experiment. The single adjustable parameter in our model is the optical-phonon cooling rate for Auger and laser-produced hot excitons. We show that the orthoexcitons move along the phase boundary without crossing it (i.e., exhibit a ``quantum saturation''), as a consequence of the balance of entropy changes due to cooling of excitons by phonons and heating by the non-radiative Auger two-exciton recombination process. The Auger annihilation rate for para-para collisions is much smaller than that for ortho-para and ortho-ortho collisions, explaining why, under the given experimental conditions, the paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex, figures available from G. Kavoulakis, Physics Department, University of Illinois, Urban

    Fine structure of excitons in Cu2_2O

    Full text link
    Three experimental observations on 1s-excitons in Cu2_2O are not consistent with the picture of the exciton as a simple hydrogenic bound state: the energies of the 1s-excitons deviate from the Rydberg formula, the total exciton mass exceeds the sum of the electron and hole effective masses, and the triplet-state excitons lie above the singlet. Incorporating the band structure of the material, we calculate the corrections to this simple picture arising from the fact that the exciton Bohr radius is comparable to the lattice constant. By means of a self-consistent variational calculation of the total exciton mass as well as the ground-state energy of the singlet and the triplet-state excitons, we find excellent agreement with experiment.Comment: Revised abstract; 10 pages, revtex, 3 figures available from G. Kavoulakis, Physics Department, University of Illinois, Urban

    Comparison of Bond Character in Hydrocarbons and Fullerenes

    Full text link
    We present a comparison of the bond polarizabilities for carbon-carbon bonds in hydrocarbons and fullerenes, using two different models for the fullerene Raman spectrum and the results of Raman measurements on ethane and ethylene. We find that the polarizabilities for single bonds in fullerenes and hydrocarbons compare well, while the double bonds in fullerenes have greater polarizability than in ethylene.Comment: 7 pages, no figures, uses RevTeX. (To appear in Phys. Rev. B.

    Spin flip from dark to bright states in InP quantum dots

    Full text link
    We report measurements of the time for spin flip from dark (non-light emitting) exciton states in quantum dots to bright (light emitting) exciton states in InP quantum dots. Dark excitons are created by two-photon excitation by an ultrafast laser. The time for spin flip between dark and bright states is found to be approximately 200 ps, independent of density and temperature below 70 K. This is much shorter than observed in other quantum dot systems. The rate of decay of the luminescence intensity, approximately 300 ps, is not simply equal to the radiative decay rate from the bright states, because the rate of decay is limited by the rate of conversion from dark excitons into bright excitons. The dependence of the luminescence decay time on the spin flip time is a general effect that applies to many experiments.Comment: 3 figure

    Polariton Condensation and Lasing

    Full text link
    The similarities and differences between polariton condensation in microcavities and standard lasing in a semiconductor cavity structure are reviewed. The recent experiments on "photon condensation" are also reviewed.Comment: 23 pages, 6 figures; Based on the book chapter in Exciton Polaritons in Microcavities, (Springer Series in Solid State Sciences vol. 172), V. Timofeev and D. Sanvitto, eds., (Springer, 2012

    A new method for detection of exciton Bose condensation using stimulated two-photon emission

    Full text link
    Stimulated two-photon emission by Bose-condensed excitons accompanied by a coherent two-exciton recombination, i.e., by simultaneous recombination of two excitons with opposite momenta leaving unchanged the occupation numbers of excitonic states with nonzero momenta, is investigated. Raman light scattering accompanied by a similar two-exciton recombination (or generation of two excitons) is also analyzed. The processes under consideration can occur only if a system contains Bose condensate, therefore, their detection can be used as a new method to reveal Bose condensation of excitons. The recoil momentum, which corresponds to a change in the momentum of the electromagnetic field in the processes, is transferred to phonons or impurities. If the recoil momentum is transmitted to optical phonons with frequency ω0s\omega_0^s, the stimulated two-photon emission with the coherent two-exciton recombination leads to the appearance of a line at 2Ωω2\Omega'-\omega, where Ω=Ωω0s\Omega'=\Omega-\omega_0^s and Ω\Omega is the light frequency corresponding to the recombination of an exciton with zero momentum. Formulas for the cross sections at finite temperatures are obtained for the processes under consideration. Our estimates indicate that a spectral line, corresponding to the stimulated two-photon emission accompanied by the coherent optical phonon-assisted two-exciton recombination can be experimentally detected in Cu2_2O.Comment: 28 pages, 3 Postscript figure

    The Grand Tour of the Ruby-East Humboldt Metamorphic Core Complex, Northeastern Nevada: Part 1-Introduction & Road Log

    Get PDF
    The purpose of this geological excursion is to provide an overview of the multiphase developmental history of the Ruby Mountains and East Humboldt Range, northeastern Nevada. Although these mountain ranges are commonly cited as a classic example of a Cordilleran metamorphic core complex developed through large-magnitude, mid-Tertiary crustal extension, a preceding polyphase Mesozoic contractional history is also well preserved in the ranges. An early phase of this history involved Late Jurassic two-mica granitic magmatism, high-temperature but relatively low-pressure metamorphism, and polyphase deformation in the central Ruby Mountains. In the northern Ruby Mountains and East Humboldt Range, a Late Cretaceous history of crustal shortening, metamorphism, and magmatism is manifested by fold-nappes (involving Archean basement rocks in the northern East Humboldt Range), widespread migmatization, injection of monzogranitic and leucogranitic magmas, all coupled with sillimanite-grade metamorphism. Following Late Cretaceous contraction, a protracted extensional deformation partially overprinted these areas during the Cenozoic. This extensional history may have begun as early as the Late Cretaceous or as late as the mid-Eocene. Late Eocene and Oligocene magmatism occurred at various levels in the crust yielding mafic to felsic orthogneisses in the deep crust, a composite granitic pluton in the upper crust, and volcanic rocks at the surface. Movement along a west-rooted, extensional shear zone in the Oligocene and early Miocene led to core-complex exhumation. The shear zone produced mylonitic rocks about 1 km thick at deep crustal levels, and an overprint of brittle detachment faulting at shallower levels as unroofing proceeded. Megabreccias and other synextensional sedimentary deposits are locally preserved in a tilted, upper Eocene through Miocene stratigraphic sequence. Neogene magmatism included the emplacement of basalt dikes and eruption of rhyolitic rocks. Subsequent Basin and Range normal faulting, as young as Holocene, records continued tectonic extension

    Excitonic instability and electric-field-induced phase transition towards a two dimensional exciton condensate

    Full text link
    We present an InAs-GaSb-based system in which the electric-field tunability of its 2D energy gap implies a transition towards a thermodynamically stable excitonic condensed phase. Detailed calculations show a 3 meV BCS-like gap appearing in a second-order phase transition with electric field. We find this transition to be very sharp, solely due to exchange interaction, and so, the exciton binding energy is greatly renormalized even at small condensate densities. This density gradually increases with external field, thus enabling the direct probe of the Bose-Einstein to BCS crossover.Comment: LaTex, 11 pages, 3 ps figures, To appear in PR

    On the Application of a Monolithic Array for Detecting Intensity-Correlated Photons Emitted by Different Source Types

    Full text link
    It is not widely appreciated that many subtleties are involved in the accurate measurement of intensity-correlated photons; even for the original experiments of Hanbury Brown and Twiss (HBT). Using a monolithic 4x4 array of single-photon avalanche diodes (SPADs), together with an off-chip algorithm for processing streaming data, we investigate the difficulties of measuring second-order photon correlations g2 in a wide variety of light fields that exhibit dramatically different correlation statistics: a multimode He-Ne laser, an incoherent intensity-modulated lamp-light source and a thermal light source. Our off-chip algorithm treats multiple photon-arrivals at pixel-array pairs, in any observation interval, with photon fluxes limited by detector saturation, in such a way that a correctly normalized g2 function is guaranteed. The impact of detector background correlations between SPAD pixels and afterpulsing effects on second-order coherence measurements is discussed. These results demonstrate that our monolithic SPAD array enables access to effects that are otherwise impossible to measure with stand-alone detectors.Comment: 17 pages, 6 figure
    corecore