112 research outputs found
f [N pi N]: from quarks to the pion derivative coupling
We study the N pi N coupling, in the framework of a QCD-inspired confining
Nambu-Jona-Lasinio model. A simple relativistic confining and instantaneous
quark model is reviewed. The Salpeter equation for the nucleon and the boosted
pion is solved. The f [n pi n] and f[n pi Delta] couplings are calculated and
they turn out to be reasonably good. The sensibility of f[n pi n] and f[n pi
Delta] to confinement, chiral symmetry breaking and Lorentz invariance is
briefly discussed.Comment: 30 pages in LaTex RevTex, 6 postscript figure
Repulsive Core of NN S-Wave Scattering in a Quark Model with a Condensed Vacuum
We work in a chiral invariant quark model, with a condensed vacuum,
characterized by only one parameter. Bound state equations for the nucleon and
Delta are solved in order to obtain an updated value of their radii and masses.
Nucleon-nucleon S-Wave scattering is studied in the RGM framework both for
isospin T=1 and T=0. The phase shifts are calculated and an equivalent local
potential, which is consistent with K-N scattering, is derived. The result is a
reasonable microscopic short range repulsion in the nucleon-nucleon
interaction.Comment: 23 pages in latex revtex, 4 Postscript figure
The BES f_0(1810): a new glueball candidate
We analyze the f_0(1810) state recently observed by the BES collaboration via
radiative J/\psi decay to a resonant \phi\omega spectrum and confront it with
DM2 data and glueball theory. The DM2 group only measured \omega\omega decays
and reported a pseudoscalar but no scalar resonance in this mass region. A
rescattering mechanism from the open flavored KKbar decay channel is considered
to explain why the resonance is only seen in the flavor asymmetric \omega\phi
branch along with a discussion of positive C parity charmonia decays to
strengthen the case for preferred open flavor glueball decays. We also
calculate the total glueball decay width to be roughly 100 MeV, in agreement
with the narrow, newly found f_0, and smaller than the expected estimate of
200-400 MeV. We conclude that this discovered scalar hadron is a solid glueball
candidate and deserves further experimental investigation, especially in the
K-Kbar channel. Finally we comment on other, but less likely, possible
assignments for this state.Comment: 11 pages, 4 figures. Major substantive additions, including an
ab-initio, QCD-based computation of the glueball inclusive decay width,
evaluation of final state effects, and enhanced discussion of several
alternative possibilities. Our conclusions are unchanged: the BES f_0(1810)
is a promising glueball candidat
Short-range potentials from QCD at order
We systematically compute the effective short-range potentials arising from
second order QCD-diagrams related to bound states of quarks, antiquarks, and
gluons. Our formalism relies on the assumption that the exchanged gluons are
massless, while the constituent gluons as well as the lightest quarks acquire a
nonvanishing constituent mass because of confinement. The potentials we obtain
include the first relativistic corrections, thus spin-spin terms, spin-orbit
terms, etc. Such effective potentials are expected to be relevant for the
building of accurate potential models describing usual hadrons as well as
exotic ones like glueballs and hybrids. In particular, we compute
for the first time an effective quark-gluon potential, and show the existence
of a quadrupolar interaction term in this case. We also discuss the influence
of a possible nonzero mass for the exchanged gluons.Comment: 33 pages, 4 tables and 12 figures ; typos correcte
Influence of seasonality on ovulatory follicular wave dynamic in long protocols in Santa Inês sheep in the tropics.
Edição dos proceedings da Annual Conference or the International Embryo Transfer Society, Orlando, Florida, 2011
Chiral Lagrangian for strange hadronic matter
A generalized Lagrangian for the description of hadronic matter based on the
linear -model is proposed. Besides the baryon
octet, the spin-0 and spin-1 nonets, a gluon condensate associated with broken
scale invariance is incorporated. The observed values for the vacuum masses of
the baryons and mesons are reproduced. In mean-field approximation, vector and
scalar interactions yield a saturating nuclear equation of state. We discuss
the difficulties and possibilities to construct a chiral invariant baryon-meson
interaction that leads to a realistic equation of state. It is found that a
coupling of the strange condensate to nucleons is needed to describe the
hyperon potentials correctly. The effective baryon masses and the appearance of
an abnormal phase of nearly massless nucleons at high densities are examined. A
nonlinear realization of chiral symmetry is considered, to retain a Yukawa-type
baryon-meson interaction and to establish a connection to the Walecka-model.Comment: Revtex, submitted to Phys. Rev.
QCD Corrections to QED Vacuum Polarization
We compute QCD corrections to QED calculations for vacuum polarization in
background magnetic fields. Formally, the diagram for virtual loops
is identical to the one for virtual loops. However due to
confinement, or to the growth of as decreases, a direct
calculation of the diagram is not allowed. At large we consider the
virtual diagram, in the intermediate region we discuss the role of
the contribution of quark condensates \left and at the
low-energy limit we consider the , as well as charged pion
loops. Although these effects seem to be out of the measurement accuracy of
photon-photon laboratory experiments they may be relevant for -ray
burst propagation. In particular, for emissions from the center of the galaxy
(8.5 kpc), we show that the mixing between the neutral pseudo-scalar pion
and photons renders a deviation from the power-law spectrum in the
range. As for scalar quark condensates \left and
virtual loops are relevant only for very high radiation density
and very strong magnetic fields of order .Comment: 15 pages, 4 figures; Final versio
A Naturally Narrow Positive Parity Theta^+
We present a consistent color-flavor-spin-orbital wave function for a
positive parity Theta^+ that naturally explains the observed narrowness of the
state. The wave function is totally symmetric in its flavor-spin part and
totally antisymmetric in its color-orbital part. If flavor-spin interactions
dominate, this wave function renders the positive parity Theta^+ lighter than
its negative parity counterpart. We consider decays of the Theta^+ and compute
the overlap of this state with the kinematically allowed final states. Our
results are numerically small. We note that dynamical correlations between
quarks are not necessary to obtain narrow pentaquark widths.Comment: 10 pages, 1 figure, Revtex4, two-column format, version to be
published in Phys. Rev. D, includes numerical estimates of decay width
- …