3,331 research outputs found

    Time in Quantum Gravity

    Get PDF
    The Wheeler-DeWitt equation in quantum gravity is timeless in character. In order to discuss quantum to classical transition of the universe, one uses a time prescription in quantum gravity to obtain a time contained description starting from Wheeler-DeWitt equation and WKB ansatz for the WD wavefunction. The approach has some drawbacks. In this work, we obtain the time-contained Schroedinger-Wheeler-DeWitt equation without using the WD equation and the WKB ansatz for the wavefunction. We further show that a Gaussian ansatz for SWD wavefunction is consistent with the Hartle-Hawking or wormhole dominance proposal boundary condition. We thus find an answer to the small scale boundary conditions.Comment: 12 Pages, LaTeX, no figur

    Thermal conductive connection and method of making same Patent

    Get PDF
    Thermal conductive, electrically insulated cleavable adhesive connection between electronic module and heat sin

    Semiclassical approximation to supersymmetric quantum gravity

    Full text link
    We develop a semiclassical approximation scheme for the constraint equations of supersymmetric canonical quantum gravity. This is achieved by a Born-Oppenheimer type of expansion, in analogy to the case of the usual Wheeler-DeWitt equation. The formalism is only consistent if the states at each order depend on the gravitino field. We recover at consecutive orders the Hamilton-Jacobi equation, the functional Schrodinger equation, and quantum gravitational correction terms to this Schrodinger equation. In particular, the following consequences are found: (i) the Hamilton-Jacobi equation and therefore the background spacetime must involve the gravitino, (ii) a (many fingered) local time parameter has to be present on SuperRiemÎŁSuperRiem \Sigma (the space of all possible tetrad and gravitino fields), (iii) quantum supersymmetric gravitational corrections affect the evolution of the very early universe. The physical meaning of these equations and results, in particular the similarities to and differences from the pure bosonic case, are discussed.Comment: 34 pages, clarifications added, typos correcte

    The Coherence of Primordial Fluctuations Produced During Inflation

    Full text link
    The behaviour of quantum metric perturbations produced during inflation is considered at the stage after the second Hubble radius crossing. It is shown that the classical correlation between amplitude and momentum of a perturbation mode, previously shown to emerge in the course of an effective quantum-to-classical transition, is maintained for a sufficiently long time, and we present the explicit form in which it takes place using the Wigner function. We further show with a simple diffraction experiment that quantum interference, non-expressible in terms of a classical stochastic description of the perturbations, is essentially suppressed. Rescattering of the perturbations leads to a comparatively slow decay of this correlation and to a complete stochastization of the system.Comment: LaTeX (7 pages

    Decoherence in the cosmic background radiation

    Full text link
    In this paper we analyze the possibility of detecting nontrivial quantum phenomena in observations of the temperature anisotropy of the cosmic background radiation (CBR), for example, if the Universe could be found in a coherent superposition of two states corresponding to different CBR temperatures. Such observations are sensitive to scalar primordial fluctuations but insensitive to tensor fluctuations, which are therefore converted into an environment for the former. Even for a free inflaton field minimally coupled to gravity, scalar-tensor interactions induce enough decoherence among histories of the scalar fluctuations as to render them classical under any realistic probe of their amplitudes.Comment: 15 pages, accepted to be published in Classical and Quantum Gravit

    Quantum-to-classical transition for fluctuations in the early Universe

    Full text link
    According to the inflationary scenario for the very early Universe, all inhomogeneities in the Universe are of genuine quantum origin. On the other hand, looking at these inhomogeneities and measuring them, clearly no specific quantum mechanical properties are observed. We show how the transition from their inherent quantum gravitational nature to classical behaviour comes about -- a transition whereby none of the successful quantitative predictions of the inflationary scenario for the present-day universe is changed. This is made possible by two properties. First, the quantum state for the spacetime metric perturbations produced by quantum gravitational effects in the early Universe becomes very special (highly squeezed) as a result of the expansion of the Universe (as long as the wavelength of the perturbations exceeds the Hubble radius). Second, decoherence through the environment distinguishes the field amplitude basis as being the pointer basis. This renders the perturbations presently indistinguishable from stochastic classical inhomogeneities.Comment: 9 pages, LATE

    Topology, Decoherence, and Semiclassical Gravity

    Full text link
    We address the issue of recovering the time-dependent Schr\"{o}dinger equation from quantum gravity in a natural way. To reach this aim it is necessary to understand the nonoccurrence of certain superpositions in quantum gravity. We explore various possible explanations and their relation. These are the delocalisation of interference terms through interaction with irrelevant degrees of freedom (decoherence), gravitational anomalies, and the possibility of Ξ\theta states. The discussion is carried out in both the geometrodynamical and connection representation of canonical quantum gravity.Comment: 18 pages, ZU-TH 3/93, to appear in Phys. Rev.

    Emergent Semiclassical Time in Quantum Gravity. Full Geometrodynamics and Minisuperspace Examples

    Get PDF
    I apply the preceding paper's semiclassical treatment to geometrodynamics. The analogy between the two papers is quite useful at the level of the quadratic constraints, while I document the differences between the two due to the underlying differences in their linear constraints. I provide a specific minisuperspace example for my emergent semiclassical time scheme and compare it with the hidden York time scheme. Overall, interesting connections are shown between Newtonian, Leibniz--Mach--Barbour, WKB and cosmic times, while the Euler and York hidden dilational times are argued to be somewhat different from these.Comment: References Update

    On time and the quantum-to-classical transition in Jordan-Brans-Dicke quantum gravity

    Get PDF
    Any quantum theory of gravity which treats the gravitational constant as a dynamical variable has to address the issue of superpositions of states corresponding to different eigenvalues. We show how the unobservability of such superpositions can be explained through the interaction with other gravitational degrees of freedom (decoherence). The formal framework is canonically quantized Jordan-Brans-Dicke theory. We discuss the concepts of intrinsic time and semiclassical time as well as the possibility of tunneling into regions corresponding to a negative gravitational constant. We calculate the reduced density matrix of the Jordan-Brans-Dicke field and show that the off-diagonal elements can be sufficiently suppressed to be consistent with experiments. The possible relevance of this mechanism for structure formation in extended inflation is briefly discussed.Comment: 10 pages, Latex, ZU-TH 15/93, BUTP-93/1
    • 

    corecore