12,014 research outputs found
Variational Principles for Lagrangian Averaged Fluid Dynamics
The Lagrangian average (LA) of the ideal fluid equations preserves their
transport structure. This transport structure is responsible for the Kelvin
circulation theorem of the LA flow and, hence, for its convection of potential
vorticity and its conservation of helicity.
Lagrangian averaging also preserves the Euler-Poincar\'e (EP) variational
framework that implies the LA fluid equations. This is expressed in the
Lagrangian-averaged Euler-Poincar\'e (LAEP) theorem proven here and illustrated
for the Lagrangian average Euler (LAE) equations.Comment: 23 pages, 3 figure
An Optimal Control Formulation for Inviscid Incompressible Ideal Fluid Flow
In this paper we consider the Hamiltonian formulation of the equations of
incompressible ideal fluid flow from the point of view of optimal control
theory. The equations are compared to the finite symmetric rigid body equations
analyzed earlier by the authors. We discuss various aspects of the Hamiltonian
structure of the Euler equations and show in particular that the optimal
control approach leads to a standard formulation of the Euler equations -- the
so-called impulse equations in their Lagrangian form. We discuss various other
aspects of the Euler equations from a pedagogical point of view. We show that
the Hamiltonian in the maximum principle is given by the pairing of the
Eulerian impulse density with the velocity. We provide a comparative discussion
of the flow equations in their Eulerian and Lagrangian form and describe how
these forms occur naturally in the context of optimal control. We demonstrate
that the extremal equations corresponding to the optimal control problem for
the flow have a natural canonical symplectic structure.Comment: 6 pages, no figures. To appear in Proceedings of the 39th IEEEE
Conference on Decision and Contro
Generalized poisson brackets and nonlinear Liapunov stability application to reduces mhd
A method is presented for obtaining Liapunov
functionals (LF) and proving nonlinear stability. The method
uses the generalized Poisson bracket (GPB) formulation of
Hamiltonian dynamics. As an illustration, certain stationary
solutions of ideal reduced MHD (RMHD) are shown to be nonlinearly
stable. This includes Grad-Shafranov and Alfven
solutions
Lagrangian Reduction, the Euler--Poincar\'{e} Equations, and Semidirect Products
There is a well developed and useful theory of Hamiltonian reduction for
semidirect products, which applies to examples such as the heavy top,
compressible fluids and MHD, which are governed by Lie-Poisson type equations.
In this paper we study the Lagrangian analogue of this process and link it with
the general theory of Lagrangian reduction; that is the reduction of
variational principles. These reduced variational principles are interesting in
their own right since they involve constraints on the allowed variations,
analogous to what one finds in the theory of nonholonomic systems with the
Lagrange d'Alembert principle. In addition, the abstract theorems about
circulation, what we call the Kelvin-Noether theorem, are given.Comment: To appear in the AMS Arnold Volume II, LATeX2e 30 pages, no figure
Electrostatic Disorder-Induced Interactions in Inhomogeneous Dielectrics
We investigate the effect of quenched surface charge disorder on
electrostatic interactions between two charged surfaces in the presence of
dielectric inhomogeneities and added salt. We show that in the linear
weak-coupling regime (i.e., by including mean-field and Gaussian-fluctuations
contributions), the image-charge effects lead to a non-zero disorder-induced
interaction free energy between two surfaces of equal mean charge that can be
repulsive or attractive depending on the dielectric mismatch across the
bounding surfaces and the exact location of the disordered charge distribution.Comment: 7 pages, 2 figure
Lattice Models of Quantum Gravity
Standard Regge Calculus provides an interesting method to explore quantum
gravity in a non-perturbative fashion but turns out to be a CPU-time demanding
enterprise. One therefore seeks for suitable approximations which retain most
of its universal features. The -Regge model could be such a desired
simplification. Here the quadratic edge lengths of the simplicial complexes
are restricted to only two possible values , with
, in close analogy to the ancestor of all lattice theories, the
Ising model. To test whether this simpler model still contains the essential
qualities of the standard Regge Calculus, we study both models in two
dimensions and determine several observables on the same lattice size. In order
to compare expectation values, e.g. of the average curvature or the Liouville
field susceptibility, we employ in both models the same functional integration
measure. The phase structure is under current investigation using mean field
theory and numerical simulation.Comment: 4 pages, 1 figure
Complete integrability versus symmetry
The purpose of this article is to show that on an open and dense set,
complete integrability implies the existence of symmetry
The Maxwell–Vlasov equations in Euler–Poincaré form
Low's well-known action principle for the Maxwell–Vlasov equations of ideal plasma dynamics was originally expressed in terms of a mixture of Eulerian and Lagrangian variables. By imposing suitable constraints on the variations and analyzing invariance properties of the Lagrangian, as one does for the Euler equations for the rigid body and ideal fluids, we first transform this action principle into purely Eulerian variables. Hamilton's principle for the Eulerian description of Low's action principle then casts the Maxwell–Vlasov equations into Euler–Poincaré form for right invariant motion on the diffeomorphism group of position-velocity phase space, [openface R]6. Legendre transforming the Eulerian form of Low's action principle produces the Hamiltonian formulation of these equations in the Eulerian description. Since it arises from Euler–Poincaré equations, this Hamiltonian formulation can be written in terms of a Poisson structure that contains the Lie–Poisson bracket on the dual of a semidirect product Lie algebra. Because of degeneracies in the Lagrangian, the Legendre transform is dealt with using the Dirac theory of constraints. Another Maxwell–Vlasov Poisson structure is known, whose ingredients are the Lie–Poisson bracket on the dual of the Lie algebra of symplectomorphisms of phase space and the Born–Infeld brackets for the Maxwell field. We discuss the relationship between these two Hamiltonian formulations. We also discuss the general Kelvin–Noether theorem for Euler–Poincaré equations and its meaning in the plasma context
Spatiotemporal patterns and agro-ecological risk factors for cutaneous and renal glomerular vasculopathy (Alabama Rot) in dogs in the UK
Seasonal outbreaks of cutaneous and renal glomerular vasculopathy (CRGV) have been reported annually in UK dogs since 2012, yet the aetiology of the disease remains unknown. The objectives of this study were to explore whether any breeds had an increased or decreased risk of being diagnosed with CRGV, and to report on age and sex distributions of CRGV cases occurring in the UK. Multivariable logistic regression was used to compare 101 dogs diagnosed with CRGV between November 2012 and May 2017 with a denominator population of 446,453 dogs from the VetCompass database. Two Kennel Club breed groups—hounds (odds ratio (OR) 10.68) and gun dogs (OR 9.69)—had the highest risk of being diagnosed with CRGV compared with terriers, while toy dogs were absent from among CRGV cases. Females were more likely to be diagnosed with CRGV (OR 1.51) as were neutered dogs (OR 3.36). As well as helping veterinarians develop an index of suspicion for the disease, better understanding of the signalment risk factors may assist in the development of causal models for CRGV and help identify the aetiology of the disease
Singular solutions of a modified two-component Camassa-Holm equation
The Camassa-Holm equation (CH) is a well known integrable equation describing
the velocity dynamics of shallow water waves. This equation exhibits
spontaneous emergence of singular solutions (peakons) from smooth initial
conditions. The CH equation has been recently extended to a two-component
integrable system (CH2), which includes both velocity and density variables in
the dynamics. Although possessing peakon solutions in the velocity, the CH2
equation does not admit singular solutions in the density profile. We modify
the CH2 system to allow dependence on average density as well as pointwise
density. The modified CH2 system (MCH2) does admit peakon solutions in velocity
and average density. We analytically identify the steepening mechanism that
allows the singular solutions to emerge from smooth spatially-confined initial
data. Numerical results for MCH2 are given and compared with the pure CH2 case.
These numerics show that the modification in MCH2 to introduce average density
has little short-time effect on the emergent dynamical properties. However, an
analytical and numerical study of pairwise peakon interactions for MCH2 shows a
new asymptotic feature. Namely, besides the expected soliton scattering
behavior seen in overtaking and head-on peakon collisions, MCH2 also allows the
phase shift of the peakon collision to diverge in certain parameter regimes.Comment: 25 pages, 11 figure
- …