1,849 research outputs found

    The Matsubara-Fradkin Thermodynamical Quantization of Podolsky Electrodynamics

    Full text link
    In this work we apply the Matsubara-Fradkin formalism and the Nakanishi's auxiliary field method to the quantization of the Podolsky electrodynamics in thermodynamic equilibrium. This approach allows us to write consistently the path integral representation for the partition function of gauge theories in a simple manner. Furthermore, we find the Dyson-Schwinger-Fradkin equations and the Ward-Fradkin-Takahashi identities for the Podolsky theory. We also write the most general form for the polarization tensor in thermodynamic equilibrium.Comment: Submitted to Physical Review

    Charge-Density-Wave and Superconductor Competition in Stripe Phases of High Temperature Superconductors

    Full text link
    We discuss the problem of competition between a superconducting (SC) ordered state with a charge density wave (CDW) state in stripe phases of high TcT_c superconductors. We consider an effective model for each stripe motivated by studies of spin-gapped electronic ladder systems. We analyze the problem of dimensional crossover arising from inter-stripe SC and CDW couplings using non-Abelian bosonization and renormalization group (RG) arguments to derive an effective O(4)O(4)-symmetric nonlinear σ\sigma-model in D=2+1D=2+1 for the case of when both inter-stripe couplings are of equal magnitude as well as equally RG relevant. By studying the effects of various symmetry lowering perturbations, we determine the structure of the phase diagram and show that, in general, it has a broad regime in which both orders coexist. The quantum and thermal critical behavior is discussed in detail, and the phase coexistence region is found to end at associated T=0T=0 as well as T>0T>0 tetracritical points. The possible role of hedgehog topological excitations of the theory is considered and argued to be RG irrelevant at the spatially anisotropic higher dimensional low-energy fixed point theory. Our results are also relevant to the case of competing N\'eel and valence bond solid (VBS) orders in quantum magnets on 2D isotropic square as well as rectangular lattices interacting via nearest neighbor Heisenberg exchange interactions.Comment: 9 pages, 3 figures (one with 3 subfigures

    Exact Transformation for Spin-Charge Separation of Spin-half Fermions without Constraints

    Full text link
    We demonstrate an exact local transformation which maps a purely Fermionic manybody system to a system of spinfull Bosons and spinless Fermions, demonstrating a possible path to a non-Fermi liquid state. We apply this to the half-filled Hubbard model and show how the transformation maps the ordinary spin half Fermionic degrees of freedom exactly and without introducing Hilbert space constraints to a charge-like ``quasicharge'' fermion and a spin-like ``quasispin'' Boson while preserving all the symmetries of the model. We present approximate solutions with localized charge which emerge naturally from the Hubbard model in this form. Our results strongly suggest that charge tends to remain localized for large values of the Hubbard U

    Geometric criticality between plaquette phases in integer-spin kagome XXZ antiferromagnets

    Full text link
    The phase diagram of the uniaxially anisotropic s=1s=1 antiferromagnet on the kagom\'e lattice includes a critical line exactly described by the classical three-color model. This line is distinct from the standard geometric classical criticality that appears in the classical limit (s→∞s \to \infty) of the 2D XY model; the s=1s=1 geometric T=0 critical line separates two unconventional plaquette-ordered phases that survive to nonzero temperature. The experimentally important correlations at finite temperature and the nature of the transitions into these ordered phases are obtained using the mapping to the three-color model and a combination of perturbation theory and a variational ansatz for the ordered phases. The ordered phases show sixfold symmetry breaking and are similar to phases proposed for the honeycomb lattice dimer model and s=1/2s=1/2 XXZXXZ model. The same mapping and phase transition can be realized also for integer spins s≥2s \geq 2 but then require strong on-site anisotropy in the Hamiltonian.Comment: 5 pages, 2 figure

    Theory of the nodal nematic quantum phase transition in superconductors

    Get PDF
    We study the character of an Ising nematic quantum phase transition (QPT) deep inside a d-wave superconducting state with nodal quasiparticles in a two-dimensional tetragonal crystal. We find that, within a 1/N expansion, the transition is continuous. To leading order in 1/N, quantum fluctuations enhance the dispersion anisotropy of the nodal excitations, and cause strong scattering which critically broadens the quasiparticle (qp) peaks in the spectral function, except in a narrow wedge in momentum space near the Fermi surface where the qp's remain sharp. We also consider the possible existence of a nematic glass phase in the presence of weak disorder. Some possible implications for cuprate physics are also discussed.Comment: 9 page, 4 figures, an error in one of expressions corrected and a new author was added. New references and footnotes are added and this is the version to appear in PR

    3-point off-shell vertex in scalar QED in arbitrary gauge and dimension

    Full text link
    We calculate the complete one-loop off-shell three-point scalar-photon vertex in arbitrary gauge and dimension for Scalar Quantum Electrodynamics. Explicit results are presented for the particular cases of dimensions 3 and 4 both for massive and massless scalars. We then propose non-perturbative forms of this vertex that coincide with the perturbative answer to order e2e^2.Comment: Uses axodra

    Surface pinning of fluctuating charge order: an "extraordinary" surface phase transition

    Full text link
    We study the mean-field theory of charge-density wave (CDW) order in a layered system, including the effect of the long-range Coulomb interaction and of screening by uncondensed electrons. We particularly focus on the conditions necessary for an ``extraordinary'' transition, in which the surface orders at a higher temperature, and is more likely to be commensurate, than the bulk. We interpret recent experiments on NaCCOC as indicating the presence of commensurate CDW at the surface that is not present in the bulk. More generally, we show that poor screening of the Coulomb interaction tends to stabilize incommensurate order, possibly explaining why the CDW order in LSCO and NbSe2 remains incommensurate to T -> 0, despite the small magnitude of the incommensurability.Comment: 9 pages, no figures, 31 references; 1 new figure and minor editing of the tex

    On dilaton dependence of type II superstring action

    Get PDF
    The supersymmetric action of type IIA D=10 superstring in N=2a, D=10 supergravity background can be derived by double dimensional reduction of the action of supermembrane coupled to D=11 supergravity. We demonstrate that the background Ramond-Ramond fields appear in the resulting superstring action with an extra factor of exponential of the dilaton.Comment: 6 pages, harvmac (references added

    Nintendo Wii Free Run vs. Treadmill Running: A Comparison of Physiological and Metabolic Data

    Get PDF
    Please view abstract in the attached PDF file
    • …
    corecore