42 research outputs found

    Odorous and pungent attributes of mixed and unmixed odorants

    Full text link
    In order to explore functional properties of the olfactory and common chemical senses as well as their relation to the total nasal sensation experienced, various concentrations of two pungent odorants were presented alone and in the presence of different backgrounds of the other irritant. Stimuli comprised formaldehyde (at 1.0, 3.5, 6.9, and 16.7 ppm), ammonia (at 210, 776, 1,172, and 1,716 ppm), and their 16 possible binary mixtures. Subjects were asked to estimate the total nasal perceived intensity, and then to assess the olfactory (odor) and common chemical (pungency) attributes of the evoked sensations. The results showed that stimulus-response functions for pungency are steeper than those for odor. Furthermore, odor was always hypoadditive in mixtures (i.e., mixtures were perceived as less intense than the sum of their components), whereas pungency was, mainly, additive, and even suggested hyperadditivity. Total perceived intensity of the stimuli, alone and in mixtures, followed the stimulus-response patterns for pungency, which, therefore, emerged as the dominating attribute used by subjects in scaling the explored range of concentrations. The relationship between total nasal perceived intensity of the mixtures and that of their components reflected hypoaddition, resembling the outcome for the odor attribute

    Odorant-Dependent Generation of Nitric Oxide in Mammalian Olfactory Sensory Neurons

    Get PDF
    The gaseous signalling molecule nitric oxide (NO) is involved in various physiological processes including regulation of blood pressure, immunocytotoxicity and neurotransmission. In the mammalian olfactory bulb (OB), NO plays a role in the formation of olfactory memory evoked by pheromones as well as conventional odorants. While NO generated by the neuronal isoform of NO synthase (nNOS) regulates neurogenesis in the olfactory epithelium, NO has not been implicated in olfactory signal transduction. We now show the expression and function of the endothelial isoform of NO synthase (eNOS) in mature olfactory sensory neurons (OSNs) of adult mice. Using NO-sensitive micro electrodes, we show that stimulation liberates NO from isolated wild-type OSNs, but not from OSNs of eNOS deficient mice. Integrated electrophysiological recordings (electro-olfactograms or EOGs) from the olfactory epithelium of these mice show that NO plays a significant role in modulating adaptation. Evidence for the presence of eNOS in mature mammalian OSNs and its involvement in odorant adaptation implicates NO as an important new element involved in olfactory signal transduction. As a diffusible messenger, NO could also have additional functions related to cross adaptation, regeneration, and maintenance of MOE homeostasis
    corecore