4 research outputs found

    Infinite temperature limit of meson spectral functions calculated on the lattice

    Full text link
    We analyze the cut-off dependence of mesonic spectral functions calculated at finite temperature on Euclidean lattices with finite temporal extent. In the infinite temperature limit we present analytic results for lattice spectral functions calculated with standard Wilson fermions as well as a truncated perfect action. We explicitly determine the influence of `Wilson doublers' on the high momentum structure of the mesonic spectral functions and show that this cut-off effect is strongly suppressed when using an improved fermion action.Comment: 25 pages, 8 figure

    Application of the Maximum Entropy Method to the (2+1)d Four-Fermion Model

    Get PDF
    We investigate spectral functions extracted using the Maximum Entropy Method from correlators measured in lattice simulations of the (2+1)-dimensional four-fermion model. This model is particularly interesting because it has both a chirally broken phase with a rich spectrum of mesonic bound states and a symmetric phase where there are only resonances. In the broken phase we study the elementary fermion, pion, sigma and massive pseudoscalar meson; our results confirm the Goldstone nature of the pi and permit an estimate of the meson binding energy. We have, however, seen no signal of sigma -> pi pi decay as the chiral limit is approached. In the symmetric phase we observe a resonance of non-zero width in qualitative agreement with analytic expectations; in addition the ultra-violet behaviour of the spectral functions is consistent with the large non-perturbative anomalous dimension for fermion composite operators expected in this model.Comment: 25 pages, 13 figure

    Mesonic Wavefunctions in the three-dimensional Gross-Neveu model

    Get PDF
    We present results from a numerical study of bound state wavefunctions in the (2+1)-dimensional Gross-Neveu model with staggered lattice fermions at both zero and nonzero temperature. Mesonic channels with varying quantum numbers are identified and analysed. In the strongly coupled chirally broken phase at T=0 the wavefunctions expose effects due to varying the interaction strength more effectively than straightforward spectroscopy. In the weakly coupled chirally restored phase information on fermion - antifermion scattering is recovered. In the hot chirally restored phase we find evidence for a screened interaction. The T=0 chirally symmetric phase is most readily distinguished from the symmetric phase at high T via the fermion dispersion relation.Comment: 18 page
    corecore