1,279 research outputs found

    The initial-final mass relationship of white dwarfs in common proper motion pairs

    Get PDF
    A promising approach to decrease the uncertainties in the initial-final mass relationship, which is still poorly constrained, is to study white dwarfs for which external constraints are available, for instance, white dwarfs in common proper motion pairs (CPMPs). Important information of the white dwarf can be inferred from the study of the companion, since they were born at the same time and with the same initial chemical composition. In this contribution, we report new results obtained from spectroscopic observations of both members of several CPMPs composed of a F, G or K type star and a DA white dwarf

    The Shortest Period Detached Binary White Dwarf System

    Full text link
    We identify SDSS J010657.39-100003.3 (hereafter J0106-1000) as the shortest period detached binary white dwarf (WD) system currently known. We targeted J0106-1000 as part of our radial velocity program to search for companions around known extremely low-mass (ELM, ~ 0.2 Msol) WDs using the 6.5m MMT. We detect peak-to-peak radial velocity variations of 740 km/s with an orbital period of 39.1 min. The mass function and optical photometry rule out a main-sequence star companion. Follow-up high-speed photometric observations obtained at the McDonald 2.1m telescope reveal ellipsoidal variations from the distorted primary but no eclipses. This is the first example of a tidally distorted WD. Modeling the lightcurve, we constrain the inclination angle of the system to be 67 +- 13 deg. J0106-1000 contains a pair of WDs (0.17 Msol primary + 0.43 Msol invisible secondary) at a separation of 0.32 Rsol. The two WDs will merge in 37 Myr and most likely form a core He-burning single subdwarf star. J0106-1000 is the shortest timescale merger system currently known. The gravitational wave strain from J0106-1000 is at the detection limit of the Laser Interferometer Space Antenna (LISA). However, accurate ephemeris and orbital period measurements may enable LISA to detect J0106-1000 above the Galactic background noise.Comment: MNRAS Letters, in pres

    Hypervelocity Star Candidates in the SEGUE G & K Dwarf Sample

    Full text link
    We present 20 candidate hypervelocity stars from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) G and K dwarf samples. Previous searches for hypervelocity stars have only focused on large radial velocities; in this study we also use proper motions to select the candidates. We determine the hypervelocity likelihood of each candidate by means of Monte Carlo simulations, considering the significant errors often associated with high proper motion stars. We find that nearly half of the candidates exceed their escape velocities with at least 98% probability. Every candidate also has less than a 25% chance of being a high-velocity fluke within the SEGUE sample. Based on orbits calculated using the observed six-dimensional positions and velocities, few, if any, of these candidates originate from the Galactic center. If these candidates are truly hypervelocity stars, they were not ejected by interactions with the Milky Way's supermassive black hole. This calls for a more serious examination of alternative hypervelocity-star ejection scenarios.Comment: 8 pages, 5 figures, published in ApJ, this version includes all figures as intende

    An equatorial ultra iron-poor star identified in BOSS

    Full text link
    We report the discovery of SDSS J131326.89-001941.4, an ultra iron-poor red giant star ([Fe/H] ~ -4.3) with a very high carbon abundance ([C/Fe]~ +2.5). This object is the fifth star in this rare class, and the combination of a fairly low effective temperature (Teff ~ 5300 K), which enhances line absorption, with its brightness (g=16.9), makes it possible to measure the abundances of calcium, carbon and iron using a low-resolution spectrum from the Sloan Digital Sky Survey. We examine the carbon and iron abundance ratios in this star and other similar objects in the light of predicted yields from metal-free massive stars, and conclude that they are consistent. By way of comparison, stars with similarly low iron abundances but lower carbon-to-iron ratios deviate from the theoretical predictions.Comment: 6 pages, 4 figures, accepted for publication in A&

    The Pristine survey II: a sample of bright stars observed with FEROS

    Full text link
    Extremely metal-poor (EMP) stars are old objects formed in the first Gyr of the Universe. They are rare and, to select them, the most successful strategy has been to build on large and low-resolution spectroscopic surveys. The combination of narrow- and broad band photometry provides a powerful and cheaper alternative to select metal-poor stars. The on-going Pristine Survey is adopting this strategy, conducting photometry with the CFHT MegaCam wide field imager and a narrow-band filter centred at 395.2 nm on the CaII-H and -K lines. In this paper we present the results of the spectroscopic follow-up conducted on a sample of 26 stars at the bright end of the magnitude range of the Survey (g<=15), using FEROS at the MPG/ESO 2.2 m telescope. From our chemical investigation on the sample, we conclude that this magnitude range is too bright to use the SDSS gri bands, which are typically saturated. Instead the Pristine photometry can be usefully combined with the APASS gri photometry to provide reliable metallicity estimates.Comment: AN accepte
    • …
    corecore