54 research outputs found

    Cord blood-circulating endothelial progenitors for treatment of vascular diseases

    Get PDF
    Abstract Adult peripheral blood (PB) endothelial progenitor cells (EPC) are produced in the bone marrow and are able to integrate vascular structures in sites of neoangiogenesis. EPCs thus represent a potential therapeutic tool for ischaemic diseases. However, use of autologous EPCs in cell therapy is limited by their rarity in adult PB. Cord blood (CB) contains more EPCs than PB, and they are functional after expansion. They form primary colonies that give rise to secondary colonies, each yielding more than 10 7 cells after few passages. The number of endothelial cells obtained from one unit of CB is compatible with potential clinical application. EPC colonies can be securely produced, expanded and cryopreserved in close culture devices and endothelial cells produced in these conditions are functional as shown in different in vitro and in vivo assays. As CB EPCderived endothelial cells would be allogeneic to patients, it would be of interest to prepare them from ready-existing CB banks. We show that not all frozen CB units from a CB bank are able to generate EPC colonies in culture, and when they do so, number of colonies is lower than that obtained with fresh CB units. However, endothelial cells derived from frozen CB have the same phenotypical and functional properties than those derived from fresh CB. This indicates that CB cryopreservation should be improved to preserve integrity of stem cells other than haematopoietic ones. Feasibility of using CB for clinical applications will be validated in porcine models of ischaemia. Origin and role of EP

    Recommended Guanidine Suppressor for the Next-Generation Caustic-Side Solvent Extraction Process

    Get PDF
    The guanidine recommended for the Next-Generation Caustic-Side is N,N ,N -tris(3,7-dimethyloctyl)guanidine (TiDG). Systematic testing has shown that it is significantly more lipophilic than the previously recommended guanidine DCiTG, the active extractant in the commercial guanidine product LIX -79, while not otherwise changing the solvent performance. Previous testing indicated that the extent of partitioning of the DCiTG suppressor to the aqueous strip solution is significantly greater than expected, potentially leading to rapid depletion of the suppressor from the solvent and unwanted organic concentrations in process effluents. Five candidate guanidines were tested as potential replacements for DCiTG. The tests included batch extraction with simulated waste and flowsheet solutions, third-phase formation, emulsion formation, and partition ratios of the guanidine between the solvent and aqueous strip solution. Preliminary results of a thermal stability test of the TiDG solvent at one month duration indicated performance approximately equivalent to DCiTG. Two of the guanidines proved adequate in all respects, and the choice of TiDG was deemed slightly preferable vs the next best guanidine BiTABG

    Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium

    Get PDF
    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modular Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University developed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Inter Laboratory efforts were coordinated in complementary fashion with engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation
    • …
    corecore