400 research outputs found
H-T Phase Diagram of Rare-Earth -- Transition Metal Alloy in the Vicinity of the Compensation Point
Anomalous hysteresis loops of ferrimagnetic amorphous alloys in high magnetic
field and in the vicinity of the compensation temperature have so far been
explained by sample inhomogeneities. We obtain H-T magnetic phase diagram for
ferrimagnetic GdFeCo alloy using a two-sublattice model in the paramagnetic
rare-earth ion approximation and taking into account rare-earth (Gd) magnetic
anisotropy. It is shown that if the magnetic anisotropy of the -sublattice
is larger than that of the -sublattice, the tricritical point can be at
higher temperature than the compensation point. The obtained phase diagram
explains the observed anomalous hysteresis loops as a result of high-field
magnetic phase transition, the order of which changes with temperature. It also
implies that in the vicinity of the magnetic compensation point the shape of
magnetic hysteresis loop is strongly temperature dependent.Comment: 8 pages, 3 figure
High Field Anomalies of Equilibrium and Ultrafast Magnetism in Rare-Earth-Transition Metal Ferrimagnets
Magneto-optical spectroscopy in fields up to 30 Tesla reveals anomalies in
the equilibrium and ultrafast magnetic properties of the ferrimagnetic
rare-earth-transition metal alloy TbFeCo. In particular, in the vicinity of the
magnetization compensation temperature, each of the magnetizations of the
antiferromagnetically coupled Tb and FeCo sublattices show triple hysteresis
loops. Contrary to state-of-the-art theory, which explains such loops by sample
inhomogeneities, here we show that they are an intrinsic property of the
rare-earth ferrimagnets. Assuming that the rare-earth ions are paramagnetic and
have a non-zero orbital momentum in the ground state and, therefore, a large
magnetic anisotropy, we are able to reproduce the experimentally observed
behavior in equilibrium. The same theory is also able to describe the
experimentally observed critical slowdown of the spin dynamics in the vicinity
of the magnetization compensation temperature, emphasizing the role played by
the orbital momentum in static and ultrafast magnetism of ferrimagnets
Broadband dielectric spectroscopy on benzophenone: alpha relaxation, beta relaxation, and mode coupling theory
We have performed a detailed dielectric investigation of the relaxational
dynamics of glass-forming benzophenone. Our measurements cover a broad
frequency range of 0.1 Hz to 120 GHz and temperatures from far below the glass
temperature well up into the region of the small-viscosity liquid. With respect
to the alpha relaxation this material can be characterized as a typical
molecular glass former with rather high fragility. A good agreement of the
alpha relaxation behavior with the predictions of the mode coupling theory of
the glass transition is stated. In addition, at temperatures below and in the
vicinity of Tg we detect a well-pronounced beta relaxation of Johari-Goldstein
type, which with increasing temperature develops into an excess wing. We
compare our results to literature data from optical Kerr effect and depolarized
light scattering experiments, where an excess-wing like feature was observed in
the 1 - 100 GHz region. We address the question if the Cole-Cole peak, which
was invoked to describe the optical Kerr effect data within the framework of
the mode coupling theory, has any relation to the canonical beta relaxation
detected by dielectric spectroscopy.Comment: 11 pages, 7 figures; revised version with new Fig. 5 and some smaller
changes according to referees' demand
Ceria Entrapped Palladium Novel Composites for Hydrogen Oxidation Reaction in Alkaline Medium
A new heterogeneous catalyst for hydrogen oxidation reaction (HOR), metallic palladium within which nanoparticles of ceria are entrapped, CeO2@Pd, is described. Its preparation is based on a new materials methodology of molecular doping of metals. The metallic matrix, which encages the nanoparticles, is prepared in foam architecture, to ensure easy molecular diffusion. Characterization of the structural properties of the CeO2@Pd composite using SEM, STEM, TEM, XRD, EXAFS and nitrogen adsorption reveals its morphological architecture, which leads to improved catalytic activity. In-situ electrochemical and H2 temperature-programmed reduction (H2-TPR) spectra provide direct experimental evidence of the weakening of Pd‒H bond in the CeO2@Pd composites, relative to pure (undoped) Pd catalysts. Gas diffusion electrodes based on the entrapped CeO2@Pd catalysts demonstrated one order of magnitude higher activity than pure Pd analog in the HOR reaction in an alkaline medium
Financial Incentive Does Not Affect P300 in the Complex Trial Protocol (CTP) Version of the Concealed Information Test (CIT) in Malingering Detection. II. Uninstructed Subjects
Well-known research showed that the skin conductance response (SCR) of the Autonomic Nervous System (ANS) in the Concealed Information Test (CIT) is usually augmented in participants who are financially and motivationally incentivized to beat the CIT. This is not what happens with Reaction Time (RT)-based CITs, P300 CITs based on the 3-stimulus protocol, nor on the P300-based complex trial protocol for detection of malingering (however these tests differ from forensic CITs). The present report follows up the Rosenfeld et al. (1, 2) study of motivated malingerers instructed how to beat the test, with uninstructed motivated (paid and unpaid) and unmotivated (“simple malingering”) subjects, using episodic and semantic memory probes. The Test of Memory Malingering (TOMM) validated behavioral differences among groups. The “CIT effect” (probe-minus-irrelevant P300 differences) did not differ among incentive groups, although as previously, semantic memory-evoked P300s exceeded episodic memory evoked P300s. An effect of specific test-beating instructions was found to enhance the CIT effect for semantic information
- …