5,481 research outputs found

    Adaptive foveated single-pixel imaging with dynamic super-sampling

    Get PDF
    As an alternative to conventional multi-pixel cameras, single-pixel cameras enable images to be recorded using a single detector that measures the correlations between the scene and a set of patterns. However, to fully sample a scene in this way requires at least the same number of correlation measurements as there are pixels in the reconstructed image. Therefore single-pixel imaging systems typically exhibit low frame-rates. To mitigate this, a range of compressive sensing techniques have been developed which rely on a priori knowledge of the scene to reconstruct images from an under-sampled set of measurements. In this work we take a different approach and adopt a strategy inspired by the foveated vision systems found in the animal kingdom - a framework that exploits the spatio-temporal redundancy present in many dynamic scenes. In our single-pixel imaging system a high-resolution foveal region follows motion within the scene, but unlike a simple zoom, every frame delivers new spatial information from across the entire field-of-view. Using this approach we demonstrate a four-fold reduction in the time taken to record the detail of rapidly evolving features, whilst simultaneously accumulating detail of more slowly evolving regions over several consecutive frames. This tiered super-sampling technique enables the reconstruction of video streams in which both the resolution and the effective exposure-time spatially vary and adapt dynamically in response to the evolution of the scene. The methods described here can complement existing compressive sensing approaches and may be applied to enhance a variety of computational imagers that rely on sequential correlation measurements.Comment: 13 pages, 5 figure

    Experimental Spinal Fusion With Recombinant Human Bone Morphogenetic Protein-2 Without Decortication of Osseous Elements

    Get PDF
    Study Design. L4-L5 intertransverse process fusions were produced with 58 μg, 230 μg, or 920 μg of recombinant human bone morphogenetic protein-2 in 20 dogs. Eleven had traditional decortication of posterior elements before insertion of the implant. Nine were left undecorticated. All animals were evaluated 3 months after surgery. Objectives. To determine whether decortication is a prerequisite for successful fusion in the presence of osteoinductive proteins such as bone morphogenetic protein-2. Summary of Background Data. Recombinant osteoinductive proteins can induce de novo bone in ectopic soft-tissue sites in the absence of bone marrow elements. Traditional methods for achieving spinal fusion rely on exposure of bone marrow through decortication to facilitate osteogenesis. It is hypothesized that the presence of an implanted osteoinductive protein obviates the need for exposure and release of host inductive factors. Methods. Recombinant human bone morphogenetic protein-2-induced intertransverse process fusions were performed with and without decortication. Fusion sites were evaluated by computed tomography imaging, high-resolution radiography, manual testing, mechanical testing, and histologic analysis. Results. One hundred percent of decorticated spines and 89% of undecorticated spines were clinically fused by 3 months. Ninety-one percent of decorticated spines and 78% of undecorticated specimens exhibited bilateral transverse process osseous bridging. The only spines that failed to achieve solid bilateral arthrodesis were in the lowest dose group. With the higher two doses, there was histologic evidence of osseous continuity between the fusion mass and undecorticated transverse processes. Conclusions. There were no statistical differences in clinical and radiographic fusion rates between decorticated and undecorticated sites. With higher doses of recombinant human bone morphogenetic protein-2, there was little histologic distinction between fusions in decorticated versus undecorticated spines

    Effective Doses of Recombinant Human Bone Morphogenetic Protein-2 in Experimental Spinal Fusion

    Get PDF
    Study Design Nineteen dogs underwent L4-L5 intertransverse process fusions with either 58 μg, 115 μg, 230 μg, 460 μg, or 920 μg of recombinant human bone morphogenetic protein-2 carried by a polylactic acid polymer. A previous study (12 dogs) compared 2300 μg of recombinant human bone morphogenetic protein-2, autogenous iliac bone, and carrier alone in this model. All fusions subsequently were compared. Objectives To characterize the dose-response relationship of recombinant human bone morphogenetic protein-2 in a spinal fusion model. Summary of Background Data Recombinant osteoinductive morphogens, such as recombinant human bone morphogenetic protein-2, are effective in vertebrate diaphyseal defect and spinal fusion models. It is hypothesized that the quality of spinal fusion produced with recombinant human bone morphogenetic protein-2, above a threshold dose, does not change with increasing amounts of inductive protein. Methods After decortication of the posterior elements, the designated implants were placed along the intertransverse process space bilaterally. The fusion sites were evaluated after 3 months by computed tomography imaging, high-resolution radiography, manual testing, mechanical testing, and histologic analysis. Results As in the study using 2300 μg of recombinant human bone morphogenetic protein-2, implantation of 58–920 μg of recombinant human bone morphogenetic protein-2 successfully resulted in intertransverse process fusion in the dog by 3 months. This had not occurred in animals containing autograft or carrier alone. The cross-sectional area of the fusion mass and mechanical stiffness of the L4-L5 intersegment were not dose-dependent. Histologic findings varied but were not related to rhBMP-2 dose. Inflammatory reaction to the composite implant was proportional inversely to the volume of the fusion mass. Conclusions No mechanical, radiographic, or histologic differences in the quality of intertransverse process fusion resulted from a 40-fold variation in dose of recombinant human bone morphogenetic protein-2

    Protecting the peri-domestic environment: the challenge for eliminating residual malaria

    Get PDF
    Malaria transmission after universal access and use of malaria preventive services is known as residual malaria transmission. The concurrent spatial-temporal distributions of people and biting mosquitoes in malaria endemic villages determines where and when residual malaria transmission occurs. Understanding human and vector population behaviors and movements is a critical first step to prevent mosquito bites to eliminate residual malaria transmission. This study identified where people in the Solomon Islands are over 24-hour periods. Participants (59%) were predominantly around the house but not in their house when most biting by Anopheles farauti, the dominant malaria vector, occurs. While 84% of people slept under a long-lasting insecticide-treated bed net (LLIN), on average only 7% were under an LLIN during the 18:00 to 21:00 h peak mosquito biting period. On average, 34% of participants spend at least one night away from their homes each fortnight. Despite high LLIN use while sleeping, most human biting by An. farauti occurs early in the evening before people go to sleep when people are in peri-domestic areas (predominantly on verandas or in kitchen areas). Novel vector control tools that protect individuals from mosquito bites between sundown and when people sleep are needed for peri-domestic areas

    A prospective study of the sensitivity, specificity and diagnostic performance of soluble intercellular adhesion molecule 1, highly sensitive C-reactive protein, soluble E-selectin and serum amyloid A in the diagnosis of neonatal infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diagnosis of neonatal infection is difficult, because of it's non-specific clinical presentation and the lack of reliable diagnostic tests. The purpose of this study was to examine the potential diagnostic value of serum soluble intercellular adhesion molecule-1 (sICAM-1), soluble E-selectin (sE-selectin), highly sensitive C-reactive protein (hsCRP) and serum amyloid A (SAA) measurements, both individually and in combination in the setting of a neonatal intensive care unit.</p> <p>Methods</p> <p>219 consecutive serum samples were taken from 149 infants undergoing sepsis work up in a neonatal intensive care unit. Clinical diagnosis was established in a prospective manner, blind to the results of the study measurements. Infants were classified by an experienced paediatrician as infected or not-infected, one week after presentation. Classification was based on clinical presentation, routine laboratory and radiological investigations and response to therapy. The infected group were sub-classified as (a) culture positive infection or (b) culture negative infection. sICAM-1, sE-selectin, hsCRP and SAA levels were determined from stored serum samples after diagnosis was established. Further sub-group analysis of results was undertaken according to early or late onset of infection and preterm or term status. Statistical analysis utilised Mann Whitney U test and ROC curve analysis.</p> <p>Results</p> <p>There were significantly increased serum levels of sICAM-1, hsCRP, E selectin (p < 0.001) and SAA (p = 0.004) in infected infants compared with non-infected. ROC curve analysis indicated area under the curve values of 0.79 (sICAM-1), 0.73 (hsCRP), 0.72 (sE-selectin) and 0.61 (SAA). ROC curve analysis also defined optimum diagnostic cut-off levels for each measurement. The performance characteristics of sICAM-1, hsCRP and sE-selectin included a high negative predictive value (NPV) for culture positive infection and this was enhanced by combination of all 4 measurements. Clinical subgroup analysis suggested particularly high NPV for early onset symptoms, however further studies are required to elucidate this finding.</p> <p>Conclusions</p> <p>All four study measurements demonstrated some diagnostic value for neonatal infection however sICAM-1, hsCRP and sE-selectin demonstrated the highest NPV individually. The optimum diagnostic cut off level for hsCRP measurement in this study was much lower than currently used in routine clinical practice. Use of a combination of measurements enhanced diagnostic performance, demonstrating sensitivity of 90.3% and NPV of 91.3%. This study suggests there may be value in use of several of these markers, individually and in combination to assist in excluding neonatal infection. Further work is needed to confirm a specific role in the exclusion of early onset infection.</p

    Corrosion resistance in artificial perspiration of Cr-based decorative coatings

    Get PDF
    We aim at developing hexavalent chromium-free coatings for frequently touched decorative parts. Cr(N,O) and multilayered CrN/CrO coatings were deposited by means of reactive magnetron sputtering. All samples presented good adhesion to the substrates enhanced by an epoxy layer designed to enhance PVD coating adhesion. Similar substrates are found in the automotive industry and can be used in appliances where a metallic finish is desired by the consumer. Corrosion behavior was induced, using artificial sweat to simulate long exposure to human touch for 96 h. In potentiodynamic polarization tests, the coatings were revealed to be nobler than the substrate alone. Cr displayed a non-existent passivation region, while gCrN exhibited a quick passivation of the surface and its respective breakdown and several current fluctuations, indicating the occurrence of pitting, which was confirmed by SEM micrography after the corrosion. Regarding EIS results, all films depicted a diminution of impedance modulus (|Z|) after 96 h, which indicates a diminution of corrosion resistance against artificial sweat. Nitride films exhibited the worst anticorrosive features. On the other hand, Cr and CrO exhibited the highest |Z| values. These results are corroborated by low the corrosion rates of both coatings. The equivalent electrical circuit allows us to confirm oxide formation in the outermost layer of the films due to electrolyte/surface interaction, indicating a self-protecting mechanism. Nitride films showed the lowest values and less corrosion resistance, confirming the results obtained in polarization potentiodynamic tests. The coatings developed in this work, namely Cr and CrO, showed a promising corrosion resistance behavior that could endure a lifetime of frequent human touch in various decorative applications either automotive or general appliances.This work was supported by COMPETE 2020 a Portuguese and European Union initiative through the Project POCI-01-0247-FEDER-072607, R&D and production of logos for the automotive industry. This research was sponsored by Norte2020, through European Social Fund (FSE), under the National Doctoral Program in “Surfaces Engineering and Protection”, NORTE-08-5369-FSE-000047. This research is sponsored by national funds through FCT—Fundação para a Ciência e a Tecnologia, under the Ph.D. Research Scholarship with Reference No. 2020.09436.BD. Author Maria José Lima acknowledges FCT for the research contract 2021.00675.CEECIND. This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of Strategic Funding (co-financed via UIDB/00285/2020 and UIDB/04650/2020) and LA/P/0112/2020
    corecore