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ABSTRACT 

Background and purpose: The anthracycline doxorubicin (DOX), although successful as a 

first-line cancer treatment, induces cardiotoxicity linked with increased production of 

myocardial reactive oxygen species (ROS), with Nox2 NADPH oxidase-derived superoxide 

reported to play a key role.  The aim of this study was to identify novel mechanisms underlying 

development of cardiac remodelling/dysfunction further to DOX-stimulated Nox2 activation. 

Experimental approach: Nox2-/- and wild-type (WT) littermate mice were administered DOX 

(12mg/kg over 3 weeks) prior to study at 4 weeks. Detailed mechanisms were investigated in 

murine HL-1 cardiomyocytes, employing a robust model of oxidative stress, gene silencing and 

pharmacological tools.      

Key results: DOX-induced cardiac dysfunction, cardiomyocyte remodelling, superoxide 

production and apoptosis in WT mice were attenuated in Nox2-/- mice. Transcriptional analysis 

of LV tissue identified 152 differentially-regulated genes (using adjusted P<0.1) in DOX-

treated Nox2-/- versus WT mice and network analysis highlighted ‘Cell death and survival’ as 

the biological function most significant to the dataset. The mitochondrial membrane protein, 

mitofusin-2 (Mfn2), appeared as a strong candidate, with increased expression (1.5-fold), 

confirmed by qPCR (1.3-fold), matching clear published evidence of promotion of 

cardiomyocyte cell death. In HL-1 cardiomyocytes, targeted siRNA knockdown of Nox2 

decreased Mfn2 protein expression, but not vice versa. While inhibition of Nox2 activity along 

with DOX treatment attenuated its apoptotic and cytotoxic effects, reduced apoptosis after 

Mfn2 silencing reflected a sustained cytotoxic response and reduced cell viability. 

Conclusions and implications: DOX-induced and Nox2-mediated upregulation of Mfn2, 

rather than contributing to cardiomyocyte dysfunction through apoptotic pathways, appears to 

promote a protective mechanism. 
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ABBREVIATIONS 

AFC, glycyl-phenylalanyl-aminofluorocoumarin; DOX, doxorubicin; DPI, 

diphenyleneiodonium; HPRT, hypoxanthine phosphoribosyltransferase; HSP, heat shock 

protein; IVSD, interventricular septal thickness in systole; IVSS, left ventricular posterior wall 

dimension in diastole; LF2000, Lipofectamine™ 2000; L-NAME, L-NG-nitroarginine methyl 

ester; LV, left ventricular; LVEDD, left ventricular end-diastolic diameter; LVPWD, left 

ventricular posterior wall dimension in diastole; LVPWS, left ventricular posterior wall 

dimension in systole; LVESD, left ventricular end-systolic diameter; Mfn2, mitofusin-2; MMP, 

matrix metalloproteinase; MTT, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium; MV, 

mitral valve; PARP-1, poly ADP ribose polymerase-1; PBMCs, peripheral blood mononuclear 

cells; PDK1, 3-phosphoinositide dependent protein kinase 1; PGC-1α, peroxisome activated 

receptor gamma coactivator-1α; R110, bis-alanylalanyl-phenylalanyl-rhodamine 110; ROS, 

reactive oxygen species; siRNA, short-interfering RNA; WT, wild-type. 
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INTRODUCTION 

Anthracycline drugs, such as doxorubicin (DOX), are effective anti-tumour drugs commonly 

prescribed to treat haematological malignancies and solid tumours, but their use is severely 

limited by a dose-dependent, cumulative and irrevocable cardiotoxicity. This is characterised 

by significant changes in cardiomyocyte biology and the extracellular matrix – the process of 

cardiac remodelling, which progresses to chamber dilatation, contractile dysfunction and 

chronic heart failure (Bloom et al., 2016). Current therapeutic strategies for DOX cardiotoxicity 

include standard heart failure medications, such as β-adrenoceptor antagonists, angiotensin 

receptor antagonists and angiotensin converting enzyme inhibitors, which can reduce the 

progression of early cardiotoxicity, although their efficacy in the longer term is limited 

(Cardinale et al., 2015; Spallarossa et al., 2016). Use of cardioprotective agents, such as 

desrazoxane, has shown benefits in certain patient groupings and so modulation of redox 

mechanisms is considered a worthwhile tactic, although how to target these is not at all clear 

(Deidda et al., 2015). Thus, further understanding of the molecular phenotype and signalling 

mechanisms of DOX-induced cardiotoxicity is fundamental to development of effective 

preventive strategies, and thereby improved chemotherapy outcome. 

Cardiomyocyte loss through cell death pathways is a customary paradigm to explain functional 

deficit in the heart and there is ample experimental evidence to support DOX-induced apoptosis, 

necrosis and autophagy, as reviewed by Carvalho et al. (2014).  One of the major tenets of the 

action of DOX is based on its interference with iron metabolism and generation of excess of 

reactive oxygen species (ROS). However, although antioxidants, such as co-enzyme Q10, N-

acetylcysteine and vitamins C and E, have been reported to exert cardioprotective effects in 

experimental models (Sterba et al., 2013), results of small randomised clinical trials have not 

shown clear benefit (van Dalen et al., 2011; Vincent et al., 2013).  The lack of success of 

antioxidant therapeutic strategies is likely to demonstrate the complexity of redox reactions in 

biological tissues (Madamanchi and Runge, 2013), in which ROS are known to serve both 

physiological and maladaptive roles. It is likely, therefore, that selective targeting of particular 

sources of ROS or downstream effectors may represent a more viable approach.  In addition to 

NOS signalling, ROS generated through NADPH oxidase play an essential role in cardiac 

pathophysiology, regulating major elements of cardiac remodelling, such as fibrosis and 

apoptosis (Grieve et al., 2006; Gilleron et al., 2009).  There is accumulating evidence to support 

an important role for Nox2 NADPH oxidase in DOX-induced cardiotoxicity, identified using 

Nox2-deficient (Nox2-/-) mice (Wojnowski et al., 2005; Deng et al., 2007; Zhao et al., 2010).  
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Indeed, our group previously reported that DOX-induced interstitial fibrosis, leukocyte 

infiltration, cardiomyocyte apoptosis and atrophy, and cardiac dysfunction were attenuated in 

Nox2-/- mice (Zhao et al., 2010).  

A great deal of mechanistic work has been performed in both in vivo and in vitro models from 

which a complex picture of signalling pathways underlying DOX-induced cardiotoxicity has 

emerged, in which cell death is balanced by intracellular survival signalling, linked to 

neuregulin / ErbB2 and Akt activation (Ghigo et al., 2106).  In promoting cell death, oxidative 

stress from ROS, including superoxide and peroxynitrite, cause activation of kinase pathways 

(MAPK kinase 4/7, checkpoint kinase 2, stress-activated protein kinase, c-Jun N-terminal 

kinase). Suppression of transcription factors, GATA-4 (Kobayashi et al., 2006; Suzuki, 2011) 

and p300 (Poizat et al., 2005), is also linked to regulation of cell survival. Induction of small 

heat shock proteins (e.g. HSP20, HSP21, HSP2, HSP70) can be either cardioprotective or 

detrimental in this setting (Liu et al., 2007; Vedam et al., 2010; Wang et al., 2016).  Other 

putative mechanisms include damage to nuclear DNA, disruption of sarcomeric protein 

synthesis (Ito et al., 1990), accumulation of the tumour suppressor protein, p53 (Yoshida et al., 

2009) and disturbance of energy metabolism (Tokarska-Schlattner et al., 2006). In 

mitochondria, increased ROS leads to Ca2+ overload which triggers mitochondrial permeability 

transition, resulting in loss of membrane potential, swelling and outer membrane rupture, and 

consequent activation of caspases, release of cytochrome c and apoptosis.  

Considering the strong evidence supporting a key role for Nox2-derived ROS in DOX-induced 

cardiotoxicity and the large number of possible signalling pathways identified, the primary 

purpose of this investigation was to highlight relevant Nox2-regulated genes and potential 

networks in this setting. Use of mRNA microarray technology (Kuhn et al. 2004) and the Nox2-

/- mouse model (Zhao et al., 2010) was considered a suitable approach. Having identified the 

mitochondrial membrane protein, mitofusin-2 (Mfn2), as a strong candidate, the hypothesis that 

upregulated Mfn2 contributes to cardiomyocyte death processes induced by DOX was tested.     

 

MATERIALS AND METHODS 

Experimental Model   

Animals: Mouse models incorporating genetic disruption underpin mechanistic evaluation 

of the contribution of particularly signalling pathways, and here we have used Nox2-/- mice to 

investigate the influence of ROS production and downstream effectors in DOX-induced 

cardiotoxicity. Nox2-/- mice on a C57BL/6J background (Pollock et al., 1995), originally 
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obtained from Jackson Laboratories (Bar Harbor, USA), were bred from an established colony 

at Queen’s University Belfast.  The principles set out in the Animal Research Reporting In Vivo 

Experiments (ARRIVE) and BJP guidelines on reporting experiments involving animals (Curtis 

et al., 2015; McGrath & Lilley, 2015) were considered throughout the study. All experimental 

procedures were carried out in accordance with the Home Office Guidance on the Operation of 

the Animals (Scientific Procedures) Act 1986, published by Her Majesty’s Stationary Office, 

London, and approved by the Queen’s University Belfast Animal Welfare and Ethical Review 

Body (PPL2714). All mice were housed in the Queen’s University Belfast Biological Services 

Unit under controlled conditions (12h light-dark cycle, 21 °C) in standard caging, typically 

together with 3-5 littermates.  

DOX administration: Male Nox2-/- and wild-type (WT) littermate controls (8-10 weeks old, 

25-28g) were randomised prior to light anaesthesia with 1.5% isofluorane for administration of 

a cumulative dose of 12mg/kg DOX or saline control by 3 weekly injections (4mg/kg i.p. at 0, 

7 and 14 days). All subsequent analyses were performed 4 weeks after the first injection. 

Selection of the 4 week time point was based on the progression of DOX-induced cardiac 

contractile dysfunction by which time a maximum decrease in percentage fractional shortening 

was achieved (Figure S1). 

Assessment of cardiac remodelling 

Echocardiography: Mice were anaesthetised with 1.5% isofluorane/oxygen, placed on a 

warming pad and imaged in the supine position using a Vevo770® ultrasound system with high-

frequency 45MHz RMV707B scan head (VisualSonics Inc.). M-mode parasternal short-axis 

scans at the level of the papillary muscles were used to quantify LV wall thickness 

(interventricular septal thickness in diastole, IVSD; interventricular septal thickness in systole, 

IVSS; left ventricular posterior wall dimension in diastole, LVPWD; left ventricular posterior 

wall dimension in systole, LVPWS) and LV end-diastolic and end-systolic diameters (LVEDD, 

LVESD) from which percentage fractional shortening was calculated (LVEDD-

LVESD)/LVEDD*100). Pulse-wave Doppler was used to quantify mitral valve (MV) flow, 

expressed as E/A ratio. 

Morphometric assessment:  Deep anaesthesia was induced by injection of sodium 

pentobarbitone (Euthanal®; 200mg/kg, i.p.) before the heart was excised and ventricles divided.  

Left ventricular (LV) weight was taken and indexed to tibial length. LV tissue was cut into 

transverse sections, which were flash frozen in liquid nitrogen prior to storage at -80°C or 

immersed in 10% (v/v) neutral-buffered formalin for histological analyses.  
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Histological analyses:  Fixed LV tissue was dehydrated using graded ethanol solutions (30-

100%, v/v) and xylene, before embedding in paraffin wax and cutting of thin sections (5µm).  

Standard haematoxylin and eosin staining was used to quantify cardiomyocyte cross-sectional 

area, analysing only cells with centrally located nuclei.  Cardiomyocyte apoptosis was assessed 

by TUNEL staining (Roche Diagnostics). TUNEL-positive nuclei were expressed as % total 

nuclei stained with DAPI (1:1000; Invitrogen) in the same sections. For analysis of both 

cardiomyocyte cross-sectional area and TUNEL staining, LV sections were visualised by 

fluorescence microscopy and quantified using blinded digital image analysis (NIS-Elements). 

Each slide contained at least four sections, which were each divided into four microscopic areas, 

from which five separate cells were measured, such that for one animal, a total of 80 cells was 

analysed.  

NADPH oxidase activity 

LV tissue samples stored at -80°C were homogenised in lysis buffer (20mM HEPES, 4mM 

EGTA, 1mM DTT, 6.25µl/ml protease inhibitor cocktail; 1ml/100mg), sonicated and 

membrane fractions prepared from supernatants by centrifugation at 12000g for 60min.  In 

samples diluted to a concentration of 1mg protein/ml, NADPH-dependent superoxide 

production was measured by lucigenin (5µM)-enhanced chemiluminescence at 37°C for 30min 

(Zhao et al., 2010). Potential sources of superoxide were assessed in experiments including: (a) 

tiron (20mM), cell-permeable superoxide scavenger; (b) diphenyleneiodonium (DPI, 10µM), 

inhibitor of NADPH oxidase and other flavoproteins; (c) L-NG-nitroarginine methyl ester (L-

NAME, 1mM), inhibitor of superoxide production by dysfunctional NOS; (d) oxypurinol 

(100µM), xanthine oxidase inhibitor and (e) rotenone (10µM), which inhibits the mitochondrial 

electron transport chain. 

Gene expression analysis using real-time RT-PCR 

Total RNA was extracted from LV homogenate using TRI-Reagent (Sigma-Aldrich). RNA 

concentration was measured at 260nm using a Thermo Scientific NanoDrop™ 1000 

spectrophotometer and purity determined as the 260:280nm ratio: samples with readings 1.8-

2.0 were considered of acceptable purity and taken forward at equal concentrations for reverse 

transcription using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). 

Quantification of mRNA expression was performed by real-time RT-PCR using Power 

SYBR®Green on an ABI 7300 Real Time PCR System (Applied Biosystems) using standard 

procedures. Primer Express Software (Applied Biosystems) was used to generate mouse-

specific primer pairs (Table S1), which were custom synthesised by Invitrogen. Pre-designed 
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and validated inventoried TaqMan® Gene Expression Assays with a FAM™ labelled probe 

(Applied Biosystems) were also employed for quantification of Nox2 mRNA expression. 

Difference in threshold cycle (Ct) for a particular PCR product from that of an endogenous 

control, β-actin (ΔCt), was calculated and data were expressed in each experiment relative to 

the control group (ΔΔCt). 

Western blotting 

LV protein was extracted by homogenisation with ice-cold RIPA buffer, as previously 

described (Zhao et al., 2010) and 20μg loaded onto a 10% SDS-PAGE gel before blotting on a 

polyvinylidene fluoride membrane (Immobilon-FL; Millipore). Membranes were incubated 

overnight at 4°C with a rabbit monoclonal antibody against Nox2 (1:1000, Abcam ab129068) 

using hypoxanthine phosphoribosyltransferase (HPRT) antibody (1:10,000, ab109021 Abcam) 

as a loading control.  This was followed by incubation with horseradish peroxidase-labelled 

goat anti-rabbit secondary antibody (1:10,000 Cell Signaling Technology #7074P2) for 60min 

at room temperature, before the membrane was developed in a darkroom using Immobilon 

Western Chemiluminescent HRP Substrate (Millipore), scanned and quantified by 

densitometry (ImageJ). Variations in band density were expressed as fold changes compared 

with the HPRT control. 

Gene expression profiling 

LV tissue was obtained from three male Nox2-/- and three WT littermate controls, treated with 

DOX, as above. Prior to sacrifice at 4 weeks, contractile dysfunction was confirmed in WT but 

not Nox2-/- mice, demonstrating that these animals developed a similar cardiotoxicity to those 

in the experimental cohorts. LV tissue was homogenised, total RNA extracted and 

quantitative/qualitative analyses were performed as above to check adequate purity and then 

diluted to a pre-determined concentration of 100ng/µl of RNA in 20µl diethylpyrocarbonate-

treated water.  Microarray analysis including quality control assessment was conducted by 

Cambridge Genomics Services.  

Quality control: Initially, the RNA Integrity Number for all gene array samples was shown to 

have a ratio of 2:1, confirming that no significant degradation of RNA product had occurred. 

RNA samples were amplified using the Ambion Illumina® TotalPrep RNA Amplification Kit, 

incorporating biotin for hybridisation with an Illumina MouseWG-6 v2.0 array. After 

hybridisation, the bead array was washed, stained and scanned (Illumina Iscan) and files were 

loaded into Genome Studio (Illumina) to assess performance of the analysis with the following 
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checks included: (a) hybridisation - three concentrations of Cy3-labeled oligonucleotides, each 

with perfect matches to control probes on the bead array; (b) low stringency - two sample 

independent oligonucleotides, a mismatch (mm2) probe and a perfect match (pm) probe, both 

compared to a control oligonucleotide; (c) high stringency - one probe corresponding to a Cy3-

labeled oligonucleotide target, probe-target pairing having a high GC base pair content; (d) 

biotin staining - a sample-independent specific labelled oligonucleotide matched and bound to 

a probe on the microarray, (e) background - oligonucleotides of a random sequence, selected to 

have no corresponding targets in the genome, the mean signal of these oligonucleotide-probe 

interactions representing the imaging system background as well as any signal resulting from 

non-specific binding of dye or cross-hybridisation; (f) signal intensity - housekeeping genes 

and ‘all gene’ controls (Illumina) to check for sample degradation, including two 

oligonucleotides per gene matched with targets on the bead array.  

To assess biological correlation within and between experimental groups, data were exported 

to the software package R and analysed using the embedded lumi package from Bioconductor 

(Du et al., 2008).  Data were initially filtered to remove any probes not detected at least once 

in the array readout. Values close to background were also deleted to prevent these genes adding 

noise to the data. A threshold for selection was set at P<0.01 and this criterion was applied in 

such a way that for a gene to be detected, it had to be present in all the samples. The new data 

set was then re-analysed employing less stringent parameters, whereby genes were selected 

based on the presence on at least one of the arrays or samples analysed. Probes that met these 

criteria were transformed using a variance stabilisation algorithm (Lin et al., 2008), similar to 

a log2 transformation, prior to quantile normalisation. Using correlation analysis, samples were 

plotted against each other, such that those with a high correlation value (close to 1) show similar 

expression profiles, while those with a high negative correlation value (i.e. close to -1) show 

different expression profiles. As the aim of this study was to highlight and subsequently validate 

the biologically-relevant signalling pathways underpinning differential DOX-induced cardiac 

remodelling in WT vs Nox2-/- mice, an established holistic pathway approach using low 

stringency selection of genes of interest was followed. This prevents exclusion of potentially 

important gene changes which may become more relevant when viewed in the context of altered 

expression of an entire signalling pathway (see below). 

Hierarchical clustering of samples and principal component analysis were performed in our 

laboratory using Partek Genomics Suite with default parameters. Data matrices were 

standardised to the median value of probe sets expression.  Standardisation of the data allows 



10 
 

for comparison of expression levels for different probe sets. Following standardisation, 2-

dimensional hierarchical clustering was performed (samples x probe sets/genes). Euclidean 

distance was used to calculate the distance matrix, a multidimensional matrix representing the 

distance from each data point (probe set-sample pair) to all the other data points. Ward’s linkage 

method was subsequently applied to join samples and genes together, with the minimum 

variance, to find compact clusters based on the calculated distance matrix.  

Identification of genes differentially expressed in WT versus Nox2-/- hearts: The 

normalised data set was analysed using the limma package from Bioconductor to generate 

LogFC (log2 fold change) values for each probe (gene ID), each with an associated P value 

from application of a modified t-test.  The False Discovery Rate adjusted P value, controlling 

for the number of false positives in tests that produce a significant result, was used as the 

primary filtering parameter. 

Network analysis: In order to identify potential signalling pathways regulated by differentially 

expressed genes, Ingenuity Pathway Analysis software incorporating the Ingenuity Knowledge 

Base, curated from primary literature, as well as public and third-party databases, was used to 

analyse the normalised dataset. An adjusted P value of <0.1 was applied to include a sufficient 

number of genes for generation of candidate molecules and pathways.   

Gene expression by real-time RT-PCR: mRNA analysis of the most relevant genes was 

performed in LV tissue from all experimental groups, and primer sequences are shown in Table 

S1. 

HL-1 cardiomyocyte model  

HL-1 cardiomyocytes were a gift from Dr. William C. Claycomb (Louisiana State University 

Health Science Centre, New Orleans). Cells were grown in T75 flasks coated with gelatin 

(0.02%) plus fibronectin (12.5mg/ml) and were maintained in Claycomb medium (Sigma-

Aldrich), supplemented with 10% FBS, 2mM L-glutamine, 10mM penicillin–streptomycin 

(Life Technologies) and 10mM norepinephrine (Sigma-Aldrich) at 37°C and 5% CO2. The 

culture medium was changed approximately every 48h and cells were passaged upon reaching 

80-90% confluency.  

Acute DOX stimulation of HL-1 cardiomyocytes: For different experiments, cells were 

seeded in 12 or 24 or 96 well plates (Nunc) at a density of 400,000 or 200,000 or 100,000 

cells/well, respectively. After 24h, cells were washed with PBS to remove cellular debris and 
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then treated with normal supplemented Claycomb medium (as above) as a control or with DOX 

(0.5, 5.0 or 50µM) for 3 or 6h.  

Characterisation of HL-1 model (protein expression, ROS production): For Western 

blotting, cell extracts were prepared by addition of ice cold RIPA buffer (300µl per well of a 

12 well plate; 1ml per T25 or T75 cell culture flask) containing protease inhibitor cocktail 

(200µl/40ml). Cells were scraped from the adherent layer, the cell suspension was centrifuged 

at 12000g for 15-20min at 4°C and the supernatant analysed for protein before Western analysis 

was performed as described above using primary antibodies detecting Nox2 (1:1000, Abcam 

ab129068) and Mfn2 (1:1000 Abcam ab50838). For measurement of ROS production, 

homogenates were prepared by probe sonication of the whole cell preparation on ice for 20 

seconds and lucigenin-enhanced chemiluminescence determined as above.  

Transfection of HL-1 cardiomyocytes 

HL-1 cardiomyocytes were plated on the day before transfection in the absence of 

norepinephrine or antibiotic. Cells were then transfected using (1) Lipofectamine™ 2000 

(LF2000, Life Technologies) with Silencer Select® short-interfering RNAs (siRNAs; Ambion, 

Life Technologies) against Mfn2 (4390771-s100687) or Nox2 (4390771-s64650), together with 

a Universal Negative Control (4390844), or (2) Dharmafect 1 Transfection Reagent 

(Dharmacon) along with SMARTpool ON-TARGETplus siRNA against Mfn2 (L-046303-00-

0005) or Nox2 (L-058659-00-000), both according to the manufacturer’s instructions and 

following a Claycomb modified protocol. Briefly, for each well of a 24 well plate, LF2000 (5µl) 

was diluted in DMEM (100µl) without serum or antibiotics and incubated for 5min at room 

temperature. To this was added siRNA (200pM) in DMEM (100µl) followed by incubation for 

20min before addition of norepinephrine/antibiotic-free Claycomb medium containing 12.5% 

serum (0.8ml). Culture medium was removed from each well, replaced with transfection 

medium and incubated at 37°C in a humidified CO2 incubator for 18h, at which time a further 

1ml of norepinephrine/antibiotic-free media was added. After 24h, transfection medium was 

replaced with norepinephrine-free supplemented Claycomb medium, without or with DOX as 

detailed in experiments below. Knockdown of targeted genes was quantified using Western 

blotting methods as previously outlined.  

Measurement of cell death processes in HL-1 cardiomyocytes  

The ApoTox-Glo™ Triplex assay (Promega) combines assessment of cell viability, cytotoxicity 

and caspase activation events within a single assay well. The first step simultaneously measures 
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live and dead-cell protease activities, using the fluorogenic substrates, glycyl-phenylalanyl-

aminofluorocoumarin (AFC) and bis-alanylalanyl-phenylalanyl-rhodamine 110 (R110), 

respectively. In the subsequent step utilising the Caspase-Glo® Assay Technology, a caspase-

3/7 substrate (tetrapeptide sequence DEVD) is added in a reagent optimised for caspase activity 

and generation of a luminescent signal produced by luciferase.  

After treatments under control conditions or with DOX (5µM) for 24h, with or without pre-

exposure to transfection or siRNA agents, the AFC/R110 reagent (100µl) was added to each 

well of a 24 well plate, in parallel with no cell control wells. The plate was wrapped in 

aluminium foil and incubated at 37°C for 90min. Fluorescence was measured using a TECAN 

Safire plate reader at excitation/emission wavelengths of 400/505nm and 480/520nm for 

measurement of AFC and R110, respectively.  Then caspase 3/7 substrate (50µl) was added to 

the wells and the plate incubated at room temperature for 1h. The solution in each well was 

mixed and the cell suspension decanted in 50µl amounts, in quadruplicate, into black, opaque-

walled 96 well plates and luminescence measured using a Berthold Tristar LB941 Multimode 

Reader luminometer. In all cases, background was accounted for by subtraction of the no cell 

control readings.  

In a second set of experiments, HL1 cells were cultured in norepinephrine/antibiotic-free 

medium for 24h prior to being reverse transfected to deplete Mfn2 and then seeded onto a 96 

well plate using Dharmafect 1 and 100nM ON-TARGET plus SMARTpool Mfn2 siRNA or a 

matched concentration of non-targeting siRNA (GE Healthcare Dharmacon Inc.). Medium was 

replaced with fresh complete media (containing norepinephrine but no antibiotics) 24h post-

transfection. Cells were then treated with DOX (3µM) 48h post-transfection (for 24h).  

Endpoint measurements included caspase 3/7 activity (Caspase-Glo® 3/7 Assay, Promega) 

performed according to manufacturer’s instructions and cell viability assessed in each condition 

using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium (MTT, 0.5g/L).  After removal of 

medium, DMSO (100µl) was added to each well, incubated at 37°C for 15min and absorbance 

read at 570nm.  An additional readout of caspase-3 mediated apoptosis was obtained by 

assessing cleaved poly ADP ribose polymerase 1 (PARP-1) using a Pierce Colorimetric In-Cell 

ELISA Kit (Thermo Fisher) supplied with a whole-cell stain (Janus Green). 

Inhibition of NADPH oxidase using VAS2870 

HL-1 cardiomyocytes in 24 well plates were pre-treated with the pan-NADPH oxidase 

inhibitor, VAS2870 (10, 50 and 100µM in 500µl fresh culture medium), for 30min. A further 

500µl culture medium containing 10µM DOX and the inhibitor was added to each well, giving 
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a final concentration of DOX of 5µM. Cells were incubated for 24h at 37ºC prior to ApoTox-

Glo™ Triplex assay as above. 

Statistical analysis 

Numbers of experiments in the four groups (Control or DOX-treated WT and Nox2-/- mice) are 

based on data for coefficients of variation of relevant end-points in LV tissue analysis measured 

in prior studies (Zhao et al., 2010) and power calculations to allow detection of a 30% difference 

between groups with < 5% false negative error. In vivo analysis of cardiac structure and function 

was performed in all of the cohorts, to include most of the animals in the study.  For gene 

expression profiling, three biological replicates were considered adequate to detect sufficient 

differences between the two samples (LV tissue from DOX-treated WT and Nox2-/- mice) to 

enable meaningful pathway analysis. HL-1 cardiomyocyte studies were performed using 6-8 

preparations for each endpoint, but data for a whole experiment were discarded if on occasion, 

a response to DOX was not obtained. Where possible, data and statistical analysis comply with 

the recommendations on experimental design and analysis in pharmacology (Curtis et al., 

2015). 

Data were expressed as mean±SEM of n animals or tissue samples or cell preparations; values 

of n and number of technical replicates, if performed, are given in Figure and Table legends. 

Where replicates were conducted (Figures 8B and 9), these values were averaged to provide a 

single value contributing to the dataset. According to the design of the experiment, data were 

analysed using GraphPad Prism (Version 7.02) after application of the Brown-Forsythe test to 

examine homogeneity of variance using a parametric one- or two-factor ANOVA followed 

post-hoc, when indicated for a particular factor (when F achieved P<0.05), by a Bonferroni 

multiple comparison test for n>2 group comparisons, or if n=2, a paired or unpaired Student’s 

t test. When data have been expressed as fold change for comparison purposes of readouts with 

different baselines, the Kruskal-Wallis test followed by Dunn’s multiple comparison test was 

applied. In all cases, P<0.05 was considered to indicate statistical significance. Microarray data 

were analysed statistically as described in the relevant section. 

 

RESULTS 

Effects of DOX on cardiac function, LV remodelling and Nox2-dependent superoxide 

production 

Echocardiography data taken from short axis M-mode recordings (Table 1) indicated that heart 

rate, LV wall thickness (IVSD, IVSS, LVPWD, LVPWS) and chamber dimensions (LVEDD, 
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LVESD) were unaltered comparing WT and Nox2-/- mice with or without DOX treatment. 

However, LV systolic function, as measured by fractional shortening, was decreased by DOX 

in WT but not in Nox2-/- mice. Similarly, diastolic dysfunction, quantified by a reduced MV 

E/A ratio versus that in controls, was evident in DOX-treated WT but not in Nox2-/- mice.  

Examination of heart weight normalised to tibial length, which did not alter across groups, 

showed that DOX decreased LV mass in WT mice (Table 1), consistent with a cachectic effect, 

which was unaltered in Nox2-/- DOX-treated animals, compared to untreated control values. 

Histological analysis of cardiomyocyte cross-sectional area confirmed that the observed action 

of DOX on LV mass was due to a specific effect on the cardiomyocyte; compared to control 

values, this was reduced in WT, but not in Nox2-/- DOX-treated animals, indicating that DOX-

induced cardiomyocyte atrophy is dependent upon Nox2 NADPH oxidase. Similarly, 

cardiomyocyte apoptosis was clearly exacerbated by DOX in LV sections from WT mice, in 

which the percentage of TUNEL-positive cells increased approximately 10-fold versus control, 

but this increase was considerably less (2-fold) in Nox2-/- mice (Figure 1A). Furthermore, the 

effect of DOX to increase activity of caspase 3/7 (key effector enzymes in the apoptotic process) 

in LV tissue from WT mice was largely attenuated in Nox2-/- mice (Figure 1B), confirming that 

DOX-induced cardiomyocyte apoptosis also appears to be Nox2-dependent.  

As expected, a DOX-induced increase in LV NADPH-dependent superoxide production was 

observed in WT but not in Nox2-/- mice (Figure 1C), supporting the idea that Nox2-dependent 

superoxide generation plays an important role in DOX cardiotoxicity. Notably, superoxide 

generation was inhibited by the superoxide scavenger, Tiron, and the flavoprotein inhibitor, 

DPI, but not by the NOS inhibitor, L-NAME, the mitochondrial inhibitor, rotenone, or the 

xanthine oxidase inhibitor, oxypurinol (Figure 1D), suggesting that the observed signal 

particularly reflects NADPH oxidase-derived superoxide. This finding is consistent with 

increased expression of Nox2 mRNA (Figure 1E) and protein (Figure 1F) in LV tissue from 

WT DOX-treated animals versus controls. No differences in LV mRNA expression of NOS 

isoenzymes (NOS1, NOS2, NOS3), superoxide dismutases (SOD1, SOD2), glutaredoxin 1 and 

2, catalase and glutathione peroxidase 1 were observed between DOX-treated WT and Nox2-/- 

mice (Figure S2). 

Microarray profiling of LV tissue and selection of candidate gene 

Samples of LV tissue from DOX-treated WT and Nox2-/- mice analysed using an Illumina 

MouseWG-6 v2.0 microarray showed acceptable read-outs in quality control assessment 

(Figure S3). Specifically, low, medium and high levels of hybridisation corresponded to signal 
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intensities, low and high stringency controls performed appropriately, successful secondary 

biotin staining was demonstrated and the signal for the negative (background) control was low.  

Furthermore, as expected, the signal level of housekeeping genes was high in comparison to 

the signal for ‘all genes’. Using unsupervised hierarchical clustering, the six samples divided 

into two distinct groups based on mouse genotype (Figure 2A), with the heatmap representing 

differentially-expressed genes (Figure 2B). A similar separation was observed by principal 

component analysis (Figure 2C), whilst the genotype label accounted for 3.45 times more 

variation above any background noise (error) even before filtering, providing confidence in the 

arrays (Figure 2D). The number of genes selected for normalisation using the described filtering 

criteria was 16825 from the original number of 45281(43%) and normalised data from both WT 

and Nox2-/- samples demonstrated good correlation (r≥0.99) between biological replicates 

(Figure S4).  

Based on an adjusted P value of <0.1 as the selection criterion, 152 mapped genes were found 

to be differentially expressed in LV tissue from WT versus Nox2-/- DOX-treated mice, and these 

are detailed in Table S2: (A) 92 upregulated genes and (B) 60 downregulated genes.  Ingenuity 

Pathway Analysis highlighted a number of networks, which related to functional sub-sets. 

Figure 3 outlines the top 12 networks ranked on the basis of the number of focus molecules 

from the data set cross referenced against the library of networks. In the context of this 

investigation, the network ranked third highest is of particular interest - Cellular Assembly and 

Organisation, Cellular Function and Maintenance, and Cell Death and Survival, which included 

18 differentially-regulated genes involved in these highly complex systems. Shown 

schematically in Figure 4A with highlighting of 15 genes particularly involved in Cell Death 

and Survival, it is not surprising to observe convergence on ERK1/ERK2, members of the 

MAPK super family which control cell fate through proliferation, apoptosis and necrosis 

pathways. Focusing on particular pathways involved in cardiomyocyte cell death that comprise 

Nox2 and activation by DOX, Figure 4B shows networks which include 6 relevant molecules: 

midkine and matrix metalloproteinase (MMP)-2 (MMP-2) in extracellular space; HSP1, heat 

shock factor binding protein 1, Mfn2; 3-phosphoinositide dependent protein kinase 1 (PDK1) 

in cytoplasm and peroxisome activated receptor gamma coactivator-1α (PGC-1α) in the 

nucleus. It should be noted that some of these genes were not necessarily differentially 

expressed based on high stringency single gene analysis (P<0.05), specifically MMP-2 and 

PDK1, but rather represented central nodes within the highlighted cell death signalling 

pathways (selected by our lower stringency approach, P<0.1; see Methods) which may be of 
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potential significance with regard to the observed effects of DOX. In an Ingenuity Downstream 

Effects Analysis, just two of the above mentioned genes were predicted to increase the function: 

upregulated Mfn2, a mitochondrial membrane protein, and downregulated midkine, a heparin-

binding growth factor/cytokine. It is of note, however, that while upregulated PGC-1α was 

predicted to decrease the cell death function, it is a known activator of cardiac Mfn2 (Li et al., 

2009). Indeed, as shown in Figure 4B, both PGC-1α and Mfn2 are implicated in DOX-related 

mechanisms, downstream of Nox2. In validation of the microarray data for Mfn2 and PGC-1α, 

showing fold changes in DOX-treated WT versus Nox2-/- mice of 1.5 and 1.7, respectively, 

mRNA analysis of LV tissue samples from all four experimental groups showed increased 

Mfn2 mRNA expression in DOX-treated WT versus control which was largely reduced in 

DOX-treated Nox2-/- mice with no difference in controls (Figure 5A); although not statistically 

significant, a similar trend was observed for PCG-1α mRNA expression (Figure 5B). Based on 

a robust microarray experiment and analysis, along with reproducibility of DOX-induced Mfn2 

activation in a separate experimental set, and the supporting literature from the Ingenuity 

Knowledge Base, the potential of upregulated Mfn2 to influence cardiomyocyte survival was 

clearly apparent.   

Investigation of Mfn2 involvement in Nox2-dependent signalling mechanisms underlying 

DOX-induced cardiomyocyte apoptosis 

In order to assess the relevance of HL-1 cardiomyocytes as a model for study of mechanisms 

underlying DOX-induced oxidative stress, the temporal and concentration-dependent effects of 

DOX on protein expression/activity of Nox2 and Mfn2 were investigated.  DOX at 5µM 

increased Nox2 protein at 24h (Figure 6A) and this was reflected in increased superoxide 

production at this concentration (Figure 6Bii), but not at a lower DOX concentration of 0.5µM 

(Figure 6Bi). Similarly, Mfn2 protein expression was increased by 5µM DOX at 24h (Figure 

6C), which was subsequently confirmed in a time course experiment in which values were 

increased 2.1- and 2.3-fold at 24h and 48h, respectively. It was subsequently confirmed that 

treatment with a DOX concentration of 5µM for 24h produced a large increase in caspase 3/7 

activity in HL-1 cardiomyocytes along with increased cell death, consistent with a pattern of 

apoptosis with secondary necrosis under these experimental conditions (Figure S5). A further 

reduction in cell viability at a higher DOX concentration (50µM) was not matched by an 

increased cytotoxicity readout. Furthermore, caspase 3/7 activity was reduced, indicating that 

when subjected to extreme stress, it is possible to miss the apoptotic window in which cells 

display their characteristic features.  For this reason, lower DOX concentrations were used in 
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subsequent investigations of Nox2 and Mfn2 signalling in cell death mechanisms using gene 

silencing and pharmacological approaches. Initially, it was established that DOX-stimulated 

Nox2 protein expression could be abrogated using specific gene silencing, whilst knockdown 

of Mfn2 did not affect Nox2 protein level by comparison with the non-targeting negative control 

siRNA (Figure 7A). In contrast, DOX-stimulated Mfn2 protein expression was abolished using 

Mfn2 siRNA, whilst knockdown of Nox2 reduced Mfn2 protein level by ~50% (Figure 7B), 

indicating possible regulation of Mfn2 by Nox2.  

Using the ApoTox-Glo™ Triplex assay, in an ‘add-mix measure’ format, the simultaneous 

measurement of cell viability and cytotoxicity produced unusual reductions of both of these 

measures when Ambion Silencer Select® negative control siRNA was used prior to DOX 

treatment: by comparison, targeting of Nox2 or Mfn2 was observed to produce increases in 

cytotoxicity, although not versus the DOX+LF2000 transfection control (Figure 8A).  Cell 

viability as well as cell phenotype of a sample treated with negative control siRNA should 

remain comparable to that of an untreated sample, i.e. the transfection control.  Furthermore, 

live and dead cell measures are normally inversely related, but here there was a concomitant 

decrease, not increase, in the cytotoxic response for negative control siRNA versus transfection 

control. The fact that there was a reduction in both readouts indicates the possibility that colour 

quenching of the fluorimetric readout (Niles et al. 2007) might have occurred under conditions 

of negative control siRNA transfection. Alternatively, an added cytotoxic effect by targeting a 

survival gene could produce a similar profile, as seen in Figure S5A-B. However, the negative 

control siRNA appeared to perform well in the caspase 3/7 assay, assessing activity by cleavage 

of the tetrapeptide sequence DEVD, such that there was no difference by comparison with the 

transfection control (Figure 8B). Gene-specific targeting of Nox2 or Mfn2 had no effect on the 

level of apoptosis induced by DOX under these conditions; it was therefore concluded that the 

level of knockdown may be insufficient and so an alternative experimental gene silencing 

strategy was adopted and a lower, likely less toxic concentration of DOX used.  Indeed, in 

reverse-transfected HL-1 cardiomyocytes carried out in suspension using Dharmacon reagents, 

prior to seeding and DOX treatment (3µM), Mfn2 knockdown exceeded 90%. Subsequently, 

using the same caspase 3/7 assay, Mfn2 gene silencing significantly reduced activity versus a 

non-targeting siRNA (Figure 8D), although also reducing cell viability, assessed using the MTT 

colorimetric assay of cell metabolic activity (Figure 8C).  Using a further index of caspase 3/7 

activity, measurement by ELISA of the 85-kDa fragment from cleavage of PARP-1 at the 

DEVD site, knockdown of Mfn2 significantly reduced PARP-1 cleavage (Figure 8F), also 
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having a detrimental effect on cell integrity, measured using the Janus Green whole cell stain 

(Figure 8E).  

Finally, the effect of pharmacological pan-NADPH oxidase inhibition on DOX-induced 

cardiotoxicity was studied in HL-1 cardiomyocytes using the triazolo pyrimidine, VAS2870, in 

the ApoTox-Glo™ assay. When used alone at the highest concentration (100µM), VAS2870 

produced a significant reduction in cell viability, despite showing no cytotoxic effects or 

increases in apoptosis, as determined by caspase 3/7 activity. However, when used at a 

concentration of 50µM, which had no basal effects on the cells, VAS2870 markedly attenuated 

DOX-induced increases in both cytotoxicity and apoptosis, suggesting that these processes 

occur at least partly due to activation of NADPH oxidases.  

 

DISCUSSION 

Despite strong evidence supporting a role for Nox2-derived ROS in DOX-induced 

cardiotoxicity and their known involvement in established remodelling pathways, the precise 

mechanisms underlying Nox2 activation in this setting remain unknown. We sought, therefore, 

to identify and examine potential new mechanisms underlying NADPH oxidase-dependent 

downstream signalling in response to DOX treatment in cardiomyocytes.   

As a basis for mechanistic studies, the initial objective was to characterise a murine model of 

DOX-induced cardiotoxicity in which Nox2-specific effects could be examined, and this was 

achieved using WT and Nox2-/- mice as in our previous study (Zhao et al., 2010), except that 

sampling was performed at 4 weeks rather than 8 weeks after initial treatment. Consistent with 

previous findings, genetic deletion of Nox2 protected mice against DOX-induced: (i) 

development of cardiac contractile dysfunction, specifically normalising systolic and diastolic 

function; (ii) cardiomyocyte atrophy, attenuating reductions in both LV mass and 

cardiomyocyte cross-sectional area; (iii) cardiomyocyte apoptosis, diminishing an increase of 

TUNEL-positive cells and of caspase 3/7 activity; and (iv) superoxide generation, reducing 

increased levels observed in WT mice. It was also established that DOX-induced ROS 

production in this setting was Nox2-derived, not due to modulation of endogenous antioxidant 

capacity or nitrosative stress, but consistent with DOX-stimulated expression of Nox2. Taken 

together, these current data consolidate convincing previous evidence that DOX-induced Nox2 

NADPH oxidase-derived ROS are involved in progression towards cardiomyocyte apoptosis. 

As such, the experimental model of DOX-induced cardiotoxicity characterised here, examined 
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4 weeks post-treatment, appears suitable for investigation of novel genes and signalling 

pathways regulated by Nox2. 

In subsequent microarray analysis comparing hearts from DOX-treated WT and Nox2-/- mice, 

Cell Death and Survival functions were found to contribute the most relevant and significant 

network to this dataset, in accordance with many previous findings relating to transcriptional 

analysis of cardiac DOX effects, identifying the importance of the protein ubiquitination 

response amongst others (Deng et al., 2007; Tokarska-Schlattner et al., 2010; Thandavarayan 

et al., 2010; Zhang et al., 2012; Sishi et al., 2013).  In this study, we chose to specifically focus 

on the role of Nox2 as a novel aspect of DOX-mediated signalling in this setting. Probing the 

identified network for Nox2 and its interrelationships with pathways linked to cardiac cell fate 

highlighted a number of relevant genes, some of which would be expected to promote survival 

or contribute to cell death processes. For example, midkine exerts an acute cytoprotective effect 

in ischaemia-reperfusion injury, at least in part due to its anti-apoptotic effect (Kadomatsu et 

al., 2014); however, in DOX-treated WT hearts the expression of midkine was downregulated 

by comparison with Nox2-/- hearts, so the involvement of this growth factor in DOX-Nox2 

apoptotic signalling may be questionable, although in a chronic treatment regime, it is possible 

that midkine may underlie an opposite adaptive mechanism. Similarly, downregulation of 

MMP-2 may be a late phase adaptation, since dysregulation of myocardial MMPs is generally 

regarded as an early contributory mechanism towards initiation and progression of heart failure. 

In particular, enhancement of MMP-2 in cardiomyocytes in response to DOX has been 

identified as redox-dependent (Spallarosa et al., 2006; Mukhopadhyay et al., 2009; Bartekova 

et al., 2015). Other significant changes induced by DOX and mediated by Nox2 indicated 

upregulation of gene expression and included increased phosphoinositide-dependent protein 

kinase-1, which is an important mediator of PI3K signalling, promoting cardiomyocyte survival 

via the PI3K-Akt pathway (An et al., 2013, Kitamura et al., 2014). Similarly, DOX-induced 

upregulation of HSP binding protein 1, which is implicated in maintaining redox homeostasis 

by upholding glutathione levels (Christians et al., 2012), may signify an attempt to promote 

survival by counteracting increased ROS production. Consistent with this argument, the 

upregulation of heat shock factor binding protein 1 by DOX, by repressing the transcriptional 

activity of heat shock factor-1 which can potentiate apoptosis through increased HSP25 (Vedam 

et al., 2010), might be expected to represent a counter-regulatory mechanism for cell survival.  

The most exceptional finding from our gene array analysis was the identification of DOX-

Nox2-mediated upregulation of Mfn2, a protein found in the outer mitochondrial membrane 
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which plays key roles in determining mitochondrial morphology and regulation of the fusion 

process. Changes in mitochondrial morphology have been linked to apoptotic cell death (Ong 

and Hausenloy, 2010) and Mfn2, independent of its pro-fusion properties, can bind with a pro-

apoptotic member of the Bcl-2 family, Bax (Wang et al., 2010). Mfn2 is able to form a 

functional unit with the mitochondrial fission protein, dynamin-related protein 1, and Bax at 

the outer mitochondrial membrane to mediate apoptotic cell death (Karbowski et al., 2002). In 

agreement, a considerable number of studies identified in the Ingenuity Knowledge Base were 

found to support the idea that increased Mfn2 in cardiomyocytes predicted an adverse outcome, 

promoting cell death through apoptotic mechanisms. For example, Shen et al. (2007) 

demonstrated that Mfn2 mediates oxidative stress-induced apoptotic cell death in neonatal 

cardiomyocytes. Additionally, siRNA inhibition of Mfn2 prevented oxidative stress-induced 

apoptotic cell death in H9c2 cardiomyocytes (Karbowski et al., 2002). Strikingly, Mfn2 is 

reported to protect the heart against ischemia-reperfusion injury and ROS-mediated damage 

(Papanicolaou et al., 2011). It was therefore concluded that Mfn2 not only serves to maintain 

mitochondrial morphology in cardiomyocytes but also promotes mitochondrial permeability 

transition activation in response to Ca2+ stimulation or ROS generation, predisposing the cells 

to a number of cell-death-inducing stimuli. In substantiating our choice of Mfn2 as a primary 

candidate underlying DOX-stimulated Nox2 signalling, it was noted that PGC-1α, which was 

also identified from the array analysis as a potential gene involved in Nox2-dependent 

cardiomyocyte apoptosis, is reported to upregulate Mfn2 expression in response to metabolic 

demand (Soriano et al., 2006; Romanello and Sandri, 2013).  

Further to identification of cardiomyocyte apoptosis as a major element in the DOX-induced 

cardiotoxic response and discovery that upregulation of Mfn2 was strongly linked, the final part 

of this investigation examined the functional relevance of Mfn2 and its relationship to Nox2 in 

cell death processes using gene silencing in HL-1 cardiomyocytes. Important characteristics of 

the mouse model used in mRNA profiling of cardiac DOX-Nox2 signalling were replicated in 

HL-1 cardiomyocytes treated with DOX (5µM), namely increased superoxide production, and 

upregulation of Nox2 and Mfn2 protein expression. Furthermore, the cell death profile induced 

by DOX in this setting is consistent with increased apoptosis leading to secondary necrosis, 

whilst the concentrations of DOX used in this study (0.5-5µM) are relevant to plasma levels 

found clinically up to 1h post-treatment (0.1-10µM) (Anderson et al., 1999). In a 

pharmacological approach, the observed effects of the pan-NADPH oxidase inhibitor, 

VAS2870, on DOX (5µM)-induced cell death add weight to the involvement of Nox2 signalling 
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in this model, although it should be noted that VAS2870 can exert Nox2-independent actions 

(Gatto et al., 2013) and is cytotoxic at high concentrations (Zielonka et al., 2014), which we 

observed at 100µM. However, at a concentration of 50µM, which maintained cell viability, 

VAS2870 was shown to reduce both cytotoxicity and caspase 3/7 activity.     

Again using a DOX concentration of 5µM and applying specific gene silencing, ~50% 

knockdown of the Nox2 and Mfn2 proteins was achieved in HL-1 cardiomyocytes and this was 

increased to >90% by adopting a reverse transfection protocol. Similar studies have reported 

the effective use of siRNAs to knockdown both Nox and Mfn2 and inhibit ROS production and 

apoptosis in cardiac cells, including HL-1 cardiomyocytes (Yeh et al., 2011), H9c2 

cardiomyocytes, (Shen et al., 2007), cultured neonatal rat cardiomyocytes (Papanicolaou et al., 

2011) and mouse ventricular cells (Moe et al., 2011). However, while this investigation found 

no changes in apoptosis in DOX-treated HL-1 cardiomyocytes in the presence of Nox2 or Mfn2 

knockdown, it is possible that efficacy of transfection may have influenced the measured 

endpoint. Indeed, highly oxidative tissues such as the heart require constant energy production, 

and as mitochondria are the powerhouse of the cardiomyocyte comprising a large proportion of 

cytoplasmic volume, it is possible that there is such a high level of Mfn2 expression in HL-1 

cardiomyocytes that the observed effects of Mfn2 siRNA on cell apoptosis may have 

underestimated the involvement of Mfn2 (Bach et al., 2003; Papanicolaou et al., 2011). Indeed, 

when a higher level of knockdown was achieved, a lack of Mfn2 corresponded with reduction 

of caspase 3/7 activity, assessed by both DEVD and PARP-1 cleavage. This must be countered, 

however, by recognition that there was no evidence of reduced cytotoxicity, assessed by the 

dead cell protease assay (R110). In fact, there was tendency towards reduced cell viability in 

all three measures, which included two of membrane integrity (live cell protease assay - AFC, 

Janus Green Whole Cell) and also mitochondrial activity (MTT). It appears, therefore, that in 

an environment associated with extreme loss of Mfn2 activity, HL-1 cardiomyocytes are more 

likely to undergo necrotic transformation; it is also possible that impairment of autophagic 

processes will impact on mitochondrial quality control (Andres et al., 2015).  As further 

information emerges, it seems that there is equivalent evidence that maintained levels of Mfn2 

may be required to counteract cell oxidative stress; for example, further to ROS induced by 

hypoxia/reoxygenation in cardiomyocytes, up-regulated Mfn2 expression prevented imbalance 

in mitochondrial dynamics (Dong et al., 2016). Loss of Mfn2 also delayed membrane 

depolarisation in isolated cardiomyocytes from adult Mfn2-/- mice, leading to the suggestion 

that Mfn2 may function to control mitochondrial permeability transition pore opening 
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(Papanicolaou et al., 2011). Similarly, cardiac-specific deletion of Mfn2 produced dissipation 

of mitochondrial membrane potential and elevated ROS production (Chen et al., 2012), whilst 

overexpression of Mfn2 was found to increase the percentage of cells containing elongated 

mitochondria, thereby reducing mitochondrial permeability transition pore opening and cell 

death after simulated ischemia/reperfusion injury (Ong et al., 2010).  It also appears that Mfn2 

serves an essential role in maintaining mitochondrial coenzyme Q levels in mouse hearts, 

thereby promoting optimal function of the respiratory chain (Mourier et al., 2015).  

In summary, therefore, it is probably true to say that the participation of Mfn2 in control of 

cardiomyocyte life or death is complex and depends upon its level of expression (Schrepfer and 

Scorrano, 2016). Nonetheless, the results of this study clearly demonstrate that while DOX 

through NADPH oxidase signalling in general can have a detrimental effect on cardiomyocyte 

survival, a particular Nox2-stimulated pathway including Mfn2 may signify an attempt to 

maintain mitochondrial biogenesis.  

In consideration of this novel premise, it must be taken into account that our investigation has 

limitations, primarily that the mouse model may not truly reflect salient features of DOX-

induced cardiotoxicity in humans, because of differences in drug metabolism and/or cardiac 

structure and function, and sensitivity to cardiac injury, all of which may be influenced by aging 

and co-morbidities (Madonna et al., 2015). Preferentially, studies in human cardiac tissue 

would be performed, but being largely unobtainable, there has been increasing interest in 

disease modelling using human embryonic stem cell and induced pluripotent stem cell-derived 

cardiomyocytes (Madonna et al., 2016, Maillet et al., 2016), although this also is not without  

criticism. Another approach is to examine peripheral blood mononuclear cells (PBMCs), in 

which the transcriptome in DOX-exposed PBMCs is highly similar to that in treated 

cardiomyocytes (Todorova et al., 2012). Of particular relevance to the findings of the current 

study, it would be of interest to extend investigation of the role of Mfn2 after DOX treatment 

using patient-derived PBMCs, since systemic mitochondrial pathologies have been shown to 

correlate in PBMCs and in cardiac tissues (Lipshultz et al., 2016). 

The potential for activation of Mfn-2 as a therapeutic strategy for cardioprotection in ischaemic 

disease and heart failure has recently received considerable attention (Ong et al., 2014; Walters 

et al., 2016). This has been intensified by recognition that Mfn2 may play a critical role in cell-

based therapies promoting the differentiation of stem cells into cardiomyocytes (Kasahara et 

al., 2013; Suliman et al., 2016). Indeed, DOX-induced cardiomyopathy is associated with 

depletion and senescence of the cardiac progenitor cell pool in both rat and human hearts, 
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permanently impairing their function (de Angelis et al., 2010; Piegari et al., 2013). Therefore, 

a pharmacological strategy involving Mfn2 that could potentially prevent degeneration of both 

adult cardiac cells and the resident stem cell pool seems an attractive idea. Such an approach 

may be enabled by the identification of a small natural molecule, 15-oxospiramilactone which, 

through inhibition of a mitochondria-localized deubiquitinase, increases Mfn2 activity (Yue et 

al., 2014), although effects have yet to be demonstrated in relevant models that could indicate 

potential targeting of this mechanism for translation to the clinic. 
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FIGURE LEGENDS 

Figure 1 

Effects of DOX on cardiomyocyte apoptosis, LV superoxide production, and Nox2 mRNA 

and protein expression in WT and Nox2-/- (KO) mice. (A) TUNEL-positive cardiomyocyte 

nuclei in LV sections quantified by digital image analysis (n=6, 80 cells in each). (B) Caspase 

3/7 activity in LV tissue, expressed as relative light units (RLU; n=5). (C) NADPH-dependent 

superoxide production analysed in LV membrane fractions by lucigenin-enhanced 

chemiluminescence (n=6). (D) Effects of selective ROS inhibitors on superoxide production in 

WT samples (n=6). (E) Nox2 mRNA expression assessed in LV tissue by real-time TaqMan 

RT-PCR (n=15-WT, n=9-KO). (F) Representative Western blot of Nox2 protein expression in 

LV homogenate (M, MCF-7 cell lysate positive control; WTC, WT control; WTD, WT DOX-

treated; KOC, KO control; KOD, KO DOX-treated; HPRT, Hypoxanthine-guanine 

phosphoribosyltransferase endogenous control) and its quantification (n=6). Data (Control □, 

DOX ■) are shown as mean (±SEM) and analyses performed using a two-factor ANOVA 

followed by unpaired Student’s t test (A, B, C) or Kruskal-Wallis test with Dunn’s post-hoc test 

for Control or DOX (D) or unpaired Student’s t test with Walsh’s correction to account for 

unequal variances (E, F). *P<0.05 vs WT Control; #P<0.05 vs WT DOX. 

Figure 2 

Microarray profiling of LV sample replicates from WT and Nox2-/- (KO) DOX-treated 

mice. (A) Unsupervised hierarchical clustering, (B) Heatmap representation of differentially 

expressed genes generated, (C) Principal component analysis (PCA) and (D) Signal to noise 

ratio for tissue samples (ID) compared to background, generated using Partek Genomics Suite, 

using 3 mice in each group. 

Figure 3 

Network analysis of genes differentially regulated in LV tissue from WT vs. Nox2-/- DOX-

treated mice. 152 genes (using cut-off of adjusted P<0.1) were analysed using Ingenuity 

Pathway Analysis software. Expression of genes in bold are significantly differentially 

regulated between groups (red arrows indicate upregulation and green arrows downregulation); 

genes not in bold are implicated in the networks but are not differentially regulated. 
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Figure 4 

Identification of differentially regulated genes within the Cellular Assembly and 

Organisation, Cellular Function and Maintenance, and Cell Death and Survival network. 

(A) Gene interactions for Network ID 3 in Figure 3 were generated by Ingenuity Pathway 

Analysis software. Red coloured genes are significantly upregulated and green coloured genes 

downregulated; the more intense the colour, the higher the level of differential gene expression; 

uncoloured molecules are not differentially expressed but involved in the network. Solid lines 

indicate a direct interaction, dashed lines an indirect interaction. The overlay highlights genes 

specifically involved in Cell Death and Survival mechanisms: ACTB, β-actin; AGRN aagrin; 

AHSA1, activator of HSP90 ATPase activity 1; DAG1, dystroglycan 1;  DKK3, dickkopf WNT 

signalling pathway inhibitor 3; HSPB1, heat shock protein binding protein 1 ; INPPL1, inositol 

polyphosphate phosphatase like 1; MDK, midkine transcript variant 3; MFN2, mitofusin 2; 

NDRG2, N-myc downstream regulated gene 2; PDPK1, 3-phosphoinositide dependent protein 

kinase 1; PLD1, phospholipase D1; PP2A, protein phosphatase 2; RABL6, RAB member RAS 

oncogene family-like 6; SYNM, synemin. (B) Cellular location of differentially-regulated 

genes which interact with DOX (extracellular) and Nox2 (CYBB; at the cytosolic-plasma 

membrane junction). Solid lines indicate a direct interaction, dashed lines an indirect 

interaction. Seven genes specifically involved in cardiomyocyte cell death are highlighted in 

blue: HSBP1, heat shock factor binding protein 1; HSPD1, heat shock protein D1;  MDK, 

midkine transcript variant 3; MFN2, mitofusin 2; MMP2, matrix metallopeptidase 2; PDPK1, 

3-phosphoinositide dependent protein kinase 1; PPARGC1A, peroxisome activated receptor 

gamma coactivator 1 alpha. 

Figure 5 

Candidate gene expression in LV tissue from WT and Nox2-/- (KO) DOX-treated mice. 

Real-time RT-PCR mRNA expression analysis of (A) Mfn2 (n=6) and (B) PGC-1α (n=9).  Data 

(Control □, DOX ■) are shown as mean (±SEM) and analyses performed using a two-factor 

ANOVA followed by unpaired Student's t-test. #P<0.05 vs WT DOX. 

Figure 6 

Effect of DOX concentration and time of incubation on superoxide production, gene and 

protein expression in HL-1 cardiomyocytes. (A) Representative Western blot showing effects 

of DOX concentration on Nox2 protein expression at 24h and its quantification (n=5); (B) 

NADPH oxidase activity in the presence of (i) 0.5µM and (ii) 5µM DOX assessed by lucigenin-
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enhanced chemiluminescence over 24h (both n=5); (C) Representative Western blot showing 

effects of DOX concentration on Mfn2 protein expression at 24h and its quantification (n=5). 

HPRT, Hypoxanthine-guanine phosphoribosyltransferase endogenous control); H, HeLa cell 

lysate positive control; M, MCF-7 cell lysate positive control; C, Control (normal medium).  

Data (Control □, DOX ■) are shown as mean (±SEM) and analyses performed using one-factor 

ANOVA (Kruskal-Wallis test) and Dunn’s post-hoc test (A, C) or two-factor ANOVA with 

paired Student's t-test, as indicated (B). *P<0.05 vs Control. 

Figure 7 

Effect of siRNA gene silencing on DOX-induced Nox2 and Mfn2 protein expression in 

HL-1 cardiomyocytes. Representative Western blots of protein expression induced by DOX 

(5µM) at 24h under control conditions and in the presence of Silencer Select® siRNAs (Mfn2, 

Nox2, Universal negative control, 200M) and its quantification: (A) Nox2 (n=5) and (B) Mfn2 

(n=6). H, HeLa cell lysate positive control; M, MCF-7 cell lysate positive control; C, Control 

(normal medium); D, DOX; Mfn2, Mfn2 siRNA; Nox2, Nox2 siRNA; Neg., negative control 

siRNA. Data are shown as mean values (±SEM) and analyses performed using one-factor 

ANOVA (Kruskal-Wallis test) and Dunn’s post-hoc test. *P<0.05 vs Control; #P<0.05 vs 

negative control DOX + siRNA. 

Figure 8 

Effect of Mfn2 and Nox2 gene silencing on HL-1 cardiomyocyte survival.  ApoTox-Glo™ 

Triplex assay of cells incubated with normal medium (Control, C) or with DOX (5µM) for 24h 

without or with previous transfection using LF2000 alone or with Silencer Select® Universal 

Negative Control, Mfn2 or Nox2 siRNAs (200M) for 24h detected by fluorescence: (A) Cell 

viability (AFC) and cytotoxicity (R110); and by luminescence: (B) Caspase 3/7 activity 

(cleavage of DEVD; all n=5, 3-4 replicates in each experiment which were averaged to provide 

a single value): using reverse transfection with Dharmafect (DFCT) and ON-TARGET plus 

SMARTpool siRNAs (24h, 100nM) and DOX (3µM, 24h): (C) Colorimetric readout of cell 

viability (MTT), (D) Caspase-Glo 3/7 assay of caspase 3/7 activity (DEVD); (E) Colorimetric 

readout of cell viability (Janus Green whole cell stain); (F) Colorimetric In-Cell ELISA of 

cleaved PARP-1 (all n=7). RLU, relative light units. Data are shown as mean value (±SEM) 

and analyses performed using a one-factor ANOVA followed by Bonferroni post-hoc test. 

*P<0.05 vs. Control or Control + transfection agent; +P<0.05 DOX + -ve siRNA vs DOX + 

transfection agent; #P<0.05 DOX + Nox2 or Mfn2 siRNA vs DOX + –ve siRNA. 
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Figure 9 

Effect of pharmacological NADPH oxidase inhibition on HL-1 cardiomyocyte survival. 

ApoTox-Glo™ Triplex assay of cells incubated with normal medium (Control, C) or with DOX 

(5µM) for 24h, without or with the pan-NADPH oxidase inhibitor, VAS2870, at a range of 

concentrations (VAS 10, 50 and 100µM). Fluorescent readout of (A) cell viability (AFC) and 

(B) cytotoxicity (R110). (C) Caspase-Glo 3/7 assay of caspase 3/7 activity (DEVD). Data 

(Control □, DOX ■) are shown as mean value (±SEM) (n=6 experiments, 3-4 replicates in each 

which were averaged to provide a single value) and analyses performed using a two-factor 

ANOVA followed by paired Student’s t-test or Dunnett’s test. *P<0.05 vs respective No DOX; 
#P<0.05 vs respective no VAS (Control). RLU, relative light units.  
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TABLE 1   

 
WT 

Control 
WT 

DOX 
Nox2-/- 
Control 

Nox2-/- 
DOX 

HR (bpm) 429 ± 10 (23) 449 ±  17 (24) 406 ± 13 (23) 436 ± 23 (29) 

IVSD (mm) 0.80 ± 0.02 (23) 0.78 ± 0.02 (24) 0.84 ± 0.03 (23) 0.77 ± 0.02 (29) 

IVSS (mm) 1.18 ± 0.06 (23) 1.13 ± 0.07 (24) 1.18 ± 0.15 (23) 1.16 ± 0.06 (29) 

LVPWD (mm) 0.81 ± 0.03 (23) 0.79 ± 0.04 (24) 0.76 ± 0.02 (23) 0.94 ± 0.06 (29) 

LVPWS (mm) 1.13 ± 0.07 (23) 1.07 ± 0.05 (24) 1.08 ± 0.07 (23) 1.28 ± 0.06 (29) 

LVEDD (mm) 4.21 ± 0.05 (23) 4.21 ± 0.05 (24) 4.15 ± 0.06 (23) 4.06 ± 0.05 (29) 

LVESD (mm) 2.91 ± 0.08 (23) 2.92 ± 0.07 (24) 3.02 ± 0.08 (23) 2.77 ± 0.08 (29) 

Fractional 
shortening (%) 

30.50 ± 1.42 (10) 26.06 ± 0.93* (16) 30.27 ± 1.67 (10) 28.91 ± 0.85 (17) 

MV E/A 1.76 ± 0.07 (19) 1.44 ± 0.05* (17) 1.53 ± 0.10 (17) 1.63 ± 0.08 (25) 

TL (mm) 18.36 ± 0.28 (19) 18.39 ± 0.28 (17) 18.32 ± 0.29 (22) 18.06 ± 0.22 (23) 

LV/TL (mg/mm) 6.01 ± 0.30 (19) 5.14 ± 0.18* (17) 6.08 ± 0.18 (22) 5.73 ± 0.16 (23) 

LV 
cardiomyocyte 
cross-sectional 

area (µm2) 

455.7 ± 25.6 (5) 347.5 ± 7.0* (5) 386.6 ± 1.3 (5) 394.7 ± 10.4 (5) 

 

Effects of doxorubicin on cardiac structure and function:  Electrocardiographic 

measurements were taken from short axis M-mode recordings (HR, heart rate; IVSD, 

interventricular septal thickness in diastole; IVSS, interventricular septal thickness in systole; 

LVPWD, left ventricular posterior wall thickness in diastole; LVPWS, left ventricular posterior 

wall thickness in systole; LVEDD, left ventricular end-diastolic diameter; LVESD, left 

ventricular end-systolic diameter), and mitral valve (MV) E/A ratio assessed by pulse-wave 

Doppler flow. LV mass/tibial length (TL) ratio was assessed and myocyte cross-sectional area 

measured after haematoxylin and eosin staining. Data are shown as mean±SEM (n, number of 

animals) and analysis performed by two-factor ANOVA, followed by unpaired Student’s t-test, 

as indicated. *P<0.05 vs WT Control. 
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TABLE S1:  Real-time RT-PCR primer sequences 

 

Gene Forward Sequence Reverse Sequence 

β-actin 5’ CGT GAA AAG ATG ACC CAG ATC A 3’ 5’ TGG TAC GAC CAG AGG CAT ACA G 3’ 

Nox2 5’ ACT CCT TGG GTC AGC ACT GG 3’ 5’ GTT CCT GTC CAG TTG TCT TCG 3’ 

GPx1 5’ AGG CTC ACC CGC TCT TTA CC 3’ 5’ GGG TCG TCA CTG GGT GTT G 3’ 

NOS1 (nNOS) 5’ GAC TGA TGG CAA GCA TGA CTT C 3’ 5’ GCC CAA GGT AGA GCC ATC TG 3’ 

NOS2 (iNOS) 5’ TGA CGG CAA ACA TGA CTT CAG 3’ 5’ GCC ATC GGG CAT CTG GTA 3’ 

NOS3 (eNOS) 5’ TCT GCG GCG ATG TCA CTA TG 3’ 5’ CCA TGC CGC CCT CTG TT 3’ 

SOD1 5’ AGC ATT CCA TCA TTG GCC GTA 3’ 5’ TTT CCA CCT TTG CCC AAG TCA 3’ 

SOD2 5’ ACA GAT TGC TGC CTG CTC TAA TCA 3’ 5’ TAA GCG TGC TCC CAC ACG TC 3’ 

Glutaredoxin1 5’ CCC TTC CCA CTC CTG CAT T 3’ 5’ GGA GGT TGA GGC TGA GAA CAC T 3’ 

Glutaredoxin2 5’ TTT GTC AAT GGA CGA TTT ATT GGA 3’ 5’GCA GCA ATT TCC CTT CTT TGT G 3’ 

Catalase 5’ TTC AGA AGA AAG CGG TCA AGA AT 3’ 5’ GAT GCG GGC CCC ATA GTC 3’ 

Peroxisome 
proliferator-

activated receptor 
gamma 

coactivator 1-
alpha (PGC-1α) 

5’ CAG CCC AGA GTC ACC AAA TGA 3’ 5’ TTC CAG AGA GTT CCA CAC TTA AGG T 3’ 

Mitofusin 2 (Mfn2) 5’ CAG TTG GTG TCT GGC ATT GTG 3’ 5’ AGG GCC TCA GTG GCA AGA A 3’ 

   

 
Real-time RT-PCR primer sequences were generated using Primer Express Software (Applied 

Biosystems, UK) and primers obtained from Invitrogen (UK). 
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TABLE S2:  Differentially expressed genes in LV tissue from WT vs. Nox-/- mice 

(A) Upregulated genes 
 

DEFINITION Gene ID logFC Ave Expr p value 
Adj. p 
value 

integrin beta 1 binding protein 3 (Itgb1bp3) ITGB1BP3 1.169 7.96 7.31E-04 0.093 

hemoglobin, beta adult major chain (Hbb-b1) HBB-B1 0.973 9.32 1.77E-04 0.049 

actin, alpha 2, smoothcle, aorta (Acta2) ACTA2 0.783 9.56 3.57E-08 0.001 

pleckstrin homology-like domain, family A, member 1 (Phlda1) PHLDA1 0.695 9.26 3.36E-05 0.028 

DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 (Ddx24) DDX24 0.627 8.57 8.66E-06 0.016 

heterogeneous nuclear ribonucleoprotein A2/B1 (Hnrnpa2b1), transcript 
variant 2 

HNRNPA2B1 0.615 9.54 4.05E-05 0.028 

RIKEN cDNA 1810015C04 gene (1810015C04Rik), transcript variant 2 1810015C04RIK 0.588 11.31 2.73E-04 0.063 

PREDICTED: similar to mitofusin 2, transcript variant 1 
(LOC100044767) 

MFN2 0.573 8.06 1.73E-04 0.048 

phosphofructokinase,cle (Pfkm) PFKM 0.562 8.82 3.26E-04 0.068 

tubulin, alpha 8 (Tuba8) TUBA8 0.548 9.49 9.23E-05 0.039 

SH3-domain kinase binding protein 1 (Sh3kbp1) SH3KBP1 0.543 9.96 2.37E-06 0.010 

  HRMT1L2 0.518 9.31 8.79E-04 0.096 

heat shock protein 1 (chaperonin) (Hspd1) HSPD1 0.516 9.87 5.78E-06 0.012 

cyclin D2 (Ccnd2) CCND2 0.512 9.60 1.88E-05 0.024 

actin, beta, cytoplasmic (Actb) ACTB 0.509 8.58 9.59E-04 0.099 

PREDICTED: similar to human protein homologous to DROER protein 
(LOC100042777) 

LOC100042777 0.503 8.89 5.49E-05 0.034 

peroxisome proliferative activated receptor, gamma, coactivator 1 alpha 
(Ppargc1a) 

PPARGC1A 0.500 8.92 3.58E-06 0.010 

trafficking protein particle complex 3 (Trappc3) TRAPPC3 0.500 8.34 4.08E-05 0.028 

Nipped-B homolog (Drosophila) (Nipbl), transcript variant A NIPBL 0.489 8.58 1.73E-05 0.024 

tubulin, beta 6 (Tubb6) TUBB6 0.487 8.62 3.93E-04 0.076 

transmembrane protein 63b (Tmem63b) TMEM63B 0.473 9.59 4.19E-05 0.028 

heat shock protein 1 (Hspb1) HSPB1 0.471 9.84 1.97E-05 0.024 

acidic (leucine-rich) nuclear phosphoprotein 32 family, member E 
(Anp32e) 

ANP32E 0.468 9.10 1.12E-04 0.039 

calcium channel, voltage-dependent, alpha2/delta subunit 1 (Cacna2d1) CACNA2D1 0.467 8.77 2.92E-05 0.028 

dystroglycan 1 (Dag1) DAG1 0.438 9.46 4.40E-04 0.078 

peroxisomal biogenesis factor 11a (Pex11a) PEX11A 0.433 8.13 3.29E-05 0.028 

enhancer of rudimentary homolog (Drosophila) (Erh) ERH 0.430 9.14 1.49E-04 0.045 

RIKEN cDNA 3300001P08 gene (3300001P08Rik) 3300001P08RIK 0.423 9.93 3.48E-04 0.070 

heat shock protein 8 (Hspa8) HSPA8 0.410 10.63 6.99E-05 0.036 

vesicle transport through interaction with t-SNAREs 1B homolog (Vti1b) VTI1B 0.406 8.02 6.13E-04 0.087 
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 D630048P19RIK 0.396 8.60 2.67E-05 0.028 

tubulin, beta 2c (Tubb2c) TUBB2C 0.394 11.44 2.81E-04 0.063 

methionine adenosyltransferase II, alpha (Mat2a) MAT2A 0.388 8.11 1.42E-04 0.045 

AHA1, activator of heat shock protein ATPase homolog 1 (yeast) 
(Ahsa1) 

AHSA1 0.387 8.14 4.42E-04 0.078 

protein tyrosine phosphatase 4a2 (Ptp4a2) PTP4A2 0.384 8.12 1.87E-04 0.050 

transportin 3 (Tnpo3) TNPO3 0.372 8.32 2.79E-04 0.063 

sushi-repeat-containing protein (Srpx) SRPX 0.371 7.08 6.37E-04 0.087 

forkhead box N3 (Foxn3) FOXN3 0.370 8.81 3.19E-04 0.067 

 3000003G13RIK 0.369 9.18 2.15E-04 0.055 

solute carrier family 25 (mitochondrial carnitine/acylcarnitine 
translocase), member 20 (Slc25a20) 

SLC25A20 0.368 8.85 1.00E-04 0.039 

PREDICTED: predicted gene, EG433144 (EG433144) EG433144 0.364 9.15 2.61E-04 0.061 

guanine nucleotide binding protein (G protein), beta 5 (Gnb5), transcript 
variant 1 

GNB5 0.354 8.13 1.24E-04 0.040 

RIKEN cDNA 2410003P15 gene (2410003P15Rik) 2410003P15RIK 0.353 9.32 1.53E-04 0.045 

aminolevulinic acid synthase 1 (Alas1) ALAS1 0.352 12.39 3.96E-05 0.028 

LIM domain binding 3 (Ldb3), transcript variant 6 LDB3 0.351 10.09 6.45E-05 0.036 

peroxisome proliferative activated receptor, gamma, coactivator 1 beta 
(Ppargc1b) 

PPARGC1B 0.351 9.58 7.38E-04 0.093 

leucine-rich repeats and transmembrane domains 1 (Lrtm1) LRTM1 0.349 9.86 6.77E-05 0.036 

G kinase anchoring protein 1 (Gkap1) GKAP1 0.347 8.57 4.48E-04 0.079 

TNNI3 interacting kinase (Tnni3k) TNNI3K 0.344 8.26 7.64E-05 0.036 

high density lipoprotein (HDL) binding protein (Hdlbp) HDLBP 0.339 8.37 2.57E-04 0.061 

heterogeneous nuclear ribonucleoprotein H1 (Hnrph1) HNRPH1 0.338 9.43 6.20E-04 0.087 

desmuslin (Dmn), transcript variant 3 DMN 0.336 7.36 4.23E-04 0.078 

3-phosphoinositide dependent protein kinase-1 (Pdpk1), transcript 
variant 2 

PDPK1 0.334 7.99 3.40E-04 0.070 

BCL2-like 13 (apoptosis facilitator) (Bcl2l13), nuclear gene encoding 
mitochondrial protein 

BCL2L13 0.331 8.21 5.08E-04 0.081 

RIKEN cDNA 2810474O19 gene (2810474O19Rik) 2810474O19RIK 0.327 7.44 7.54E-05 0.036 

proline synthetase co-transcribed (Prosc), transcript variant 3 PROSC 0.319 8.19 2.57E-04 0.061 

regulator of calcineurin 2 (Rcan2), transcript variant 1 RCAN2 0.318 9.53 1.15E-04 0.039 

RIKEN cDNA B230208H17 gene (B230208H17Rik) XM_897418 
XM_897429 XM_897439 XM_897452 XM_897459 XM_914394 
XM_923230 XM_923233 XM_923237 XM_923239 XM_923241 
XM_923243 XM_923244 XM_923249 XM_923252 

B230208H17RIK 0.306 7.85 5.54E-04 0.085 

SNRPN upstream reading frame (Snurf) SNURF 0.306 10.46 8.73E-04 0.096 

  GNA13 0.306 8.17 8.88E-04 0.096 

SMT3 suppressor of mif two 3 homolog 3 (yeast) (Sumo3) SUMO3 0.304 8.33 4.79E-04 0.081 

insulin induced gene 2 (Insig2) INSIG2 0.303 9.52 1.70E-04 0.048 

zinc finger CCCH type containing 13 (Zc3h13) ZC3H13 0.303 7.13 2.31E-04 0.057 
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  LOC331507 0.302 9.47 1.49E-04 0.045 

RIKEN cDNA 1700113I22 gene (1700113I22Rik) 1700113I22RIK 0.301 9.25 1.21E-04 0.040 

splicing factor, arginine/serine-rich 10 (transformer 2 homolog, 
Drosophila) (Sfrs10) 

SFRS10 0.299 8.01 9.80E-04 0.099 

EH-domain containing 4 (Ehd4) EHD4 0.293 12.64 8.95E-04 0.096 

Cd63 antigen (Cd63), transcript variant 2 CD63 0.289 8.70 5.64E-04 0.085 

 LOC384888 0.288 7.60 8.30E-04 0.096 

RIKEN cDNA 1110007M04 gene (1110007M04Rik) 1110007M04RIK 0.288 11.27 4.42E-04 0.078 

PRP19/PSO4 pre-mRNA processing factor 19 homolog (S cerevisiae) 
(Prpf19) 

PRPF19 0.288 8.83 7.08E-04 0.092 

myocyte enhancer factor 2C (Mef2c) MEF2C 0.287 9.39 9.84E-04 0.099 

calumenin (Calu), transcript variant 2 CALU 0.286 7.45 8.81E-04 0.096 

dynein light chain LC8-type 2 (Dynll2) DYNLL2 0.285 7.25 4.04E-04 0.076 

adipose differentiation related protein (Adfp) ADFP 0.283 7.71 6.00E-04 0.087 

transmembrane protein 49 (Tmem49) TMEM49 0.278 8.53 9.87E-04 0.099 

PREDICTED: similar to medium-chain acyl-CoA dehydrogenase 
(LOC333331), misc RNA 

LOC333331 0.277 12.15 8.97E-04 0.096 

PREDICTED: similar to mitochondrial ribosomal protein S5 
(LOC667609), misc RNA 

LOC667609 0.269 9.11 6.06E-04 0.087 

N-myc downstream regulated gene 2 (Ndrg2) NDRG2 0.268 9.41 9.85E-04 0.099 

myeloid leukemia factor 2 (Mlf2) MLF2 0.263 8.77 7.55E-04 0.095 

zinc finger protein 91 (Zfp91) ZFP91 0.258 7.71 4.37E-04 0.078 

Shwachman-Bodian-Diamond syndrome homolog (human) (Sbds) SBDS 0.256 9.67 3.43E-04 0.070 

 C730026J16 0.256 9.02 4.14E-04 0.077 

H2A histone family, member Y (H2afy) H2AFY 0.251 8.31 5.59E-04 0.085 

 SIAT7F 0.251 7.10 3.02E-04 0.065 

protein phosphatase 1 (formerly 2C)-like (Ppm1l) PPM1L 0.246 7.73 4.91E-04 0.081 

T-box 20 (Tbx20), transcript variant 1 TBX20 0.245 7.27 7.90E-04 0.096 

heat shock protein 3 (Hspb3) HSPB3 0.237 8.78 4.97E-04 0.081 

 ZFP445 0.235 7.28 4.77E-04 0.081 

adenylosuccinate synthetase like 1 (Adssl1) ADSSL1 0.229 7.84 9.43E-04 0.098 

 MTF2 0.225 8.15 7.26E-04 0.093 

tetraspanin 3 (Tspan3) TSPAN3 0.215 11.15 8.90E-04 0.096 
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(B) Downregulated genes 
 

DEFINITION Gene ID logFC Ave Expr p value 
Adj. p 
value 

D site albumin promoter binding protein (Dbp) DBP -1.203 10.84 7.01E-05 0.036 

RIKEN cDNA 1500015O10 gene (1500015O10Rik) 1500015O10RIK -0.853 7.45 1.57E-05 0.024 

Indolethylamine N-methyltransferase (Inmt) INMT -0.792 8.87 4.04E-04 0.076 

PREDICTED: similar to beta chemokine Exodus-2 (LOC100041504) LOC100041504 -0.746 8.77 8.91E-04 0.096 

Gene model 129, (NCBI) (Gm129) GM129 -0.721 7.32 5.46E-04 0.084 

Chemokine (C-C motif) ligand 21b (Ccl21b) CCL21B -0.715 9.60 1.05E-04 0.039 

Dickkopf homolog 3 (Xenopus laevis) (Dkk3) DKK3 -0.695 7.47 6.56E-04 0.088 

Vesicle-associated membrane protein, associated protein B and C (Vapb) VAPB -0.663 8.22 3.57E-06 0.010 

Tissue inhibitor of metalloproteinase 3 (Timp3) TIMP3 -0.554 10.42 1.13E-04 0.039 

Angiopoietin-like 7 (Angptl7) ANGPTL7 -0.536 7.73 5.86E-05 0.035 

Epoxide hydrolase 1, microsomal (Ephx1) EPHX1 -0.466 9.59 5.59E-06 0.012 

Period homolog 2 (Drosophila) (Per2) PER2 -0.462 8.34 2.12E-04 0.055 

Transmembrane protein 82 (Tmem82) TMEM82 -0.461 7.94 3.03E-04 0.065 

Histocompatibility 2, class II antigen E beta (H2-Eb1) H2-EB1 -0.441 9.32 1.84E-04 0.050 

cDNA sequence X99384 (X99384) X99384 -0.428 8.33 4.18E-05 0.028 

Histocompatibility 2, class II antigen A, beta 1 (H2-Ab1) H2-AB1 -0.420 9.68 2.76E-05 0.028 

Mid1 interacting protein 1 (gastrulation specific G12-like (zebrafish)) 
(Mid1ip1) 

MID1IP1 -0.408 10.00 5.10E-04 0.081 

Serine (or cysteine) peptidase inhibitor, clade F, member 1 (Serpinf1) SERPINF1 -0.402 10.39 7.87E-05 0.036 

Parvalbumin (Pvalb) PVALB -0.389 7.21 9.25E-06 0.016 

CD74 antigen (invariant polypeptide of major histocompatibility complex, 
class II antigen-associated) (Cd74) 

CD74 -0.384 9.69 7.90E-04 0.096 

Scavenger receptor class A, member 3 (Scara3) SCARA3 -0.380 7.57 1.61E-04 0.047 

PREDICTED: similar to MHC class II antigen beta chain (LOC641240) LOC641240 -0.373 9.06 3.70E-04 0.072 

cDNA sequence BC028528 (BC028528) BC028528 -0.363 8.85 9.21E-04 0.097 

Growth differentiation factor 10 (Gdf10) GDF10 -0.359 7.50 3.43E-05 0.028 

3'-Phosphoadenosine 5'-phosphosulfate synthase 2 (Papss2) PAPSS2 -0.355 8.29 2.19E-04 0.055 

Yippee-like 3 (Drosophila) (Ypel3) YPEL3 -0.354 11.52 1.46E-04 0.045 

Midkine (Mdk), transcript variant 3 MDK -0.340 7.59 1.04E-04 0.039 

Leucyl-tRNA synthetase (Lars)  LARS -0.335 8.78 8.56E-05 0.038 

Cytochrome P450, family 27, subfamily a, polypeptide 1 (Cyp27a1) CYP27A1 -0.331 8.75 6.08E-04 0.087 

Multimerin 2 (Mmrn2) MMRN2 -0.321 9.22 1.21E-04 0.040 

Insulin-like growth factor binding protein 6 (Igfbp6) IGFBP6 -0.304 7.68 6.99E-04 0.092 

PREDICTED: similar to HLA-G protein (LOC674135), misc RNA LOC674135 -0.293 8.70 4.65E-04 0.081 
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 WDFY1 -0.293 7.79 1.12E-04 0.039 

Secreted acidic cysteine rich glycoprotein (Sparc) SPARC -0.291 10.67 6.25E-04 0.087 

Aagrin (Agrn) AGRN -0.290 9.64 2.15E-04 0.055 

PREDICTED: sterile alpha motif domain containing 9-like, transcript 
variant 1 (Samd9l) 

SAMD9L -0.289 9.22 9.77E-04 0.099 

Bromodomain containing 2 (Brd2), transcript variant 1 BRD2 -0.287 9.14 8.57E-04 0.096 

PREDICTED: glutaminase, transcript variant 3 (Gls) GLS -0.281 8.25 6.56E-04 0.088 

Integrin, beta-like 1 (Itgbl1) ITGBL1 -0.279 8.22 9.24E-04 0.097 

  CCDC3 -0.279 7.29 8.99E-04 0.096 

Transforming growth factor, beta receptor III (Tgfbr3) TGFBR3 -0.277 8.32 3.20E-04 0.067 

Progressive ankylosis (Ank) ANK -0.275 10.20 5.07E-04 0.081 

 6330403M23RIK -0.272 9.22 5.39E-04 0.084 

PREDICTED: RIKEN cDNA 1810013L24 gene (1810013L24Rik) 1810013L24RIK -0.270 8.36 5.13E-04 0.081 

PREDICTED: golgi autoantigen, golgin subfamily b, macrogolgin 1, 
transcript variant 9 (Golgb1) 

GOLGB1 -0.268 8.17 8.04E-04 0.096 

Cadherin 5 (Cdh5) CDH5 -0.265 7.98 7.67E-04 0.096 

Matrix metallopeptidase 2 (Mmp2) MMP2 -0.264 9.93 2.55E-04 0.061 

  4930533K18RIK -0.262 8.22 6.39E-04 0.087 

 1110046J11RIK -0.261 11.35 8.01E-04 0.096 

Ankyrin repeat domain 12 (Ankrd12) ANKRD12 -0.259 7.71 5.01E-04 0.081 

ATP-binding cassette transporter sub-family A member 9 (Abca9) ABCA9 -0.259 7.73 3.64E-04 0.072 

  LOC98434 -0.253 8.58 5.76E-04 0.086 

Lymphocyte antigen 6 complex, locus E (Ly6e) LY6E -0.252 8.68 8.70E-04 0.096 

  CD8B -0.249 9.21 9.16E-04 0.097 

SWI/SNF related, matrix associated, actin dependent regulator of 
chromatin, subfamily c, member 2 (Smarcc2) 

SMARCC2 -0.246 7.82 8.85E-04 0.096 

Inositol polyphosphate phosphatase-like 1 (Inppl1) INPPL1 -0.240 10.74 5.88E-04 0.087 

AHNAK nucleoprotein 2 (Ahnak2) AHNAK2 -0.239 7.73 6.19E-04 0.087 

3-Hydroxybutyrate dehydrogenase, type 2 (Bdh2) BDH2 -0.232 7.23 7.32E-04 0.093 

 PLD1 -0.228 7.66 8.24E-04 0.096 

  1700041B20RIK -0.218 8.19 8.77E-04 0.096 
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FIGURE S1:  Time course of contractile dysfunction in response to DOX treatment  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WT mice were administered saline or DOX (4mg/kg) by 3 weekly intraperitoneal (i.p.) 

injections and fractional shortening quantified at weekly intervals by echocardiography (n=9). 

Data are shown as mean±SEM and represent % decrease compared to WT control. 
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FIGURE S2:  Effect of DOX on LV NOS isoenzyme and antioxidant gene mRNA expression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mRNA expression of (A) NOS1 (n=11-15), (B) NOS2 (n=12-13), (C) NOS3 (n=6-9), (D), 

superoxide dismutase 1 (SOD1, n=6-9), (E) SOD2 (n=7-9), (F), glutaredoxin 1 (GLRX1, n=6-

8), (G) GLRX2 (n=11-13), (H) catalase (n=7-8), and (I) glutathione peroxidase (GPx1, n=10-

13) by real-time RT-PCR. Data (Control □, DOX ■) are shown as mean (±SEM) and analyses 

performed using a two-factor ANOVA. P=NS. 
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FIGURE S3:  Quality control assessment of Illumina MouseWG-6 v2.0 microarray 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cDNA was generated from WT and Nox2-/- DOX-treated mouse LV (n=3) and used in 

evaluation of signal intensity using probes for: (A) Hybridisation; (B) Mismatch (mm2) and 

perfect match (pm); (C) biotin; (D) background and noise and (E) gene intensity. Signal was 

measured as fluorescence and expressed in arbitrary units. Bar graphs were generated by 

Cambridge Genomic Services. 
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FIGURE S4: Comparison of normalised transcript data within samples from WT and Nox2-/- 

mice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A correlation coefficient (Cor) was generated between each sample in the (A) WT group and 

(B) Nox2-/- group. Graphs were generated in the R programme using the lumi package by 

Cambridge Genomics Services.  

A 

B 
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FIGURE S5:  Concentration responses for optimisation of experimental conditions for the 

ApoTox-Glo Triplex assay in HL-1 cardiomyocytes 

 

 

HL-1 cardiomyocytes (seeded 20000 cells/well) in a 96 well plate format were incubated in 

normal medium (Control, C) or with increasing concentrations of DOX (0.5μM, 5μM, 50μM), 

or varying volumes (0-5µl/100µl total well volume) of LF2000 (LF) for 24h prior to detection 

by fluorescence. (A) Cell viability (aminofluorocoumarin, AFC) and (B) cytotoxicity 

(rhodamine 110, R110), and by luminescence (C) Caspase 3/7 activity (cleavage of DEVD). 

Data are shown as average value (n=2, 8-10 replicates in each). RLU, relative light units. 

A 

C 

B 
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