452 research outputs found

    Realtime calibration of the A4 electromagnetic lead fluoride calorimeter

    Full text link
    Sufficient energy resolution is the key issue for the calorimetry in particle and nuclear physics. The calorimeter of the A4 parity violation experiment at MAMI is a segmented calorimeter where the energy of an event is determined by summing the signals of neighbouring channels. In this case the precise matching of the individual modules is crucial to obtain a good energy resolution. We have developped a calibration procedure for our total absorbing electromagnetic calorimeter which consists of 1022 lead fluoride (PbF_2) crystals. This procedure reconstructs the the single-module contributions to the events by solving a linear system of equations, involving the inversion of a 1022 x 1022-matrix. The system has shown its functionality at beam energies between 300 and 1500 MeV and represents a new and fast method to keep the calorimeter permanently in a well-calibrated state

    Measurement of the Transverse Beam Spin Asymmetry in Elastic Electron Proton Scattering and the Inelastic Contribution to the Imaginary Part of the Two-Photon Exchange Amplitude

    Full text link
    We report on a measurement of the asymmetry in the scattering of transversely polarized electrons off unpolarized protons, A_\perp, at two Q2^2 values of \qsquaredaveragedlow (GeV/c)2^2 and \qsquaredaveragedhighII (GeV/c)2^2 and a scattering angle of 30<θe<4030^\circ < \theta_e < 40^\circ. The measured transverse asymmetries are A_{\perp}(Q2^2 = \qsquaredaveragedlow (GeV/c)2^2) = (\experimentalasymmetry alulowcorr ±\pm \statisticalerrorlowstat_{\rm stat} ±\pm \combinedsyspolerrorlowalucorsys_{\rm sys}) ×\times 106^{-6} and A_{\perp}(Q2^2 = \qsquaredaveragedhighII (GeV/c)2^2) = (\experimentalasymme tryaluhighcorr ±\pm \statisticalerrorhighstat_{\rm stat} ±\pm \combinedsyspolerrorhighalucorsys_{\rm sys}) ×\times 106^{-6}. The first errors denotes the statistical error and the second the systematic uncertainties. A_\perp arises from the imaginary part of the two-photon exchange amplitude and is zero in the one-photon exchange approximation. From comparison with theoretical estimates of A_\perp we conclude that π\piN-intermediate states give a substantial contribution to the imaginary part of the two-photon amplitude. The contribution from the ground state proton to the imaginary part of the two-photon exchange can be neglected. There is no obvious reason why this should be different for the real part of the two-photon amplitude, which enters into the radiative corrections for the Rosenbluth separation measurements of the electric form factor of the proton.Comment: 4 figures, submitted to PRL on Oct.

    A luminosity monitor for the A4 parity violation experiment at MAMI

    Full text link
    A water Cherenkov luminosity monitor system with associated electronics has been developed for the A4 parity violation experiment at MAMI. The detector system measures the luminosity of the hydrogen target hit by the MAMI electron beam and monitors the stability of the liquid hydrogen target. Both is required for the precise study of the count rate asymmetries in the scattering of longitudinally polarized electrons on unpolarized protons. Any helicity correlated fluctuation of the target density leads to false asymmetries. The performance of the luminosity monitor, investigated in about 2000 hours with electron beam, and the results of its application in the A4 experiment are presented.Comment: 22 pages, 12 figures, submitted to NIM

    Evidence for Strange Quark Contributions to the Nucleon's Form Factors at Q2Q^2 = 0.108 (GeV/c)2^2

    Full text link
    We report on a measurement of the parity violating asymmetry in the elastic scattering of polarized electrons off unpolarized protons with the A4 apparatus at MAMI in Mainz at a four momentum transfer value of Q2Q^2 = \Qsquare (GeV/c)2^2 and at a forward electron scattering angle of 30<θe<40^\circ < \theta_e < 40^\circ. The measured asymmetry is ALR(ep)A_{LR}(\vec{e}p) = (\Aphys ±\pm \Deltastatstat_{stat} ±\pm \Deltasystsyst_{syst}) ×\times 106^{-6}. The expectation from the Standard Model assuming no strangeness contribution to the vector current is A0_0 = (\Azero ±\pm \DeltaAzero) ×\times 106^{-6}. We have improved the statistical accuracy by a factor of 3 as compared to our previous measurements at a higher Q2Q^2. We have extracted the strangeness contribution to the electromagnetic form factors from our data to be GEsG_E^s + \FakGMs GMsG_M^s = \GEsGMs ±\pm \DeltaGEsGMs at Q2Q^2 = \Qsquare (GeV/c)2^2. As in our previous measurement at higher momentum transfer for GEsG_E^s + 0.230 GMsG_M^s, we again find the value for GEsG_E^s + \FakGMs GMsG_M^s to be positive, this time at an improved significance level of 2 σ\sigma.Comment: 4 pages, 3 figure

    Asexuality: Classification and characterization

    Get PDF
    This is a post-print version of the article. The official published version can be obtaineed at the link below.The term “asexual” has been defined in many different ways and asexuality has received very little research attention. In a small qualitative study (N = 4), individuals who self-identified as asexual were interviewed to help formulate hypotheses for a larger study. The second larger study was an online survey drawn from a convenience sample designed to better characterize asexuality and to test predictors of asexual identity. A convenience sample of 1,146 individuals (N = 41 self-identified asexual) completed online questionnaires assessing sexual history, sexual inhibition and excitation, sexual desire, and an open-response questionnaire concerning asexual identity. Asexuals reported significantly less desire for sex with a partner, lower sexual arousability, and lower sexual excitation but did not differ consistently from non-asexuals in their sexual inhibition scores or their desire to masturbate. Content analyses supported the idea that low sexual desire is the primary feature predicting asexual identity

    Evolution in random fitness landscapes: the infinite sites model

    Full text link
    We consider the evolution of an asexually reproducing population in an uncorrelated random fitness landscape in the limit of infinite genome size, which implies that each mutation generates a new fitness value drawn from a probability distribution g(w)g(w). This is the finite population version of Kingman's house of cards model [J.F.C. Kingman, \textit{J. Appl. Probab.} \textbf{15}, 1 (1978)]. In contrast to Kingman's work, the focus here is on unbounded distributions g(w)g(w) which lead to an indefinite growth of the population fitness. The model is solved analytically in the limit of infinite population size NN \to \infty and simulated numerically for finite NN. When the genome-wide mutation probability UU is small, the long time behavior of the model reduces to a point process of fixation events, which is referred to as a \textit{diluted record process} (DRP). The DRP is similar to the standard record process except that a new record candidate (a number that exceeds all previous entries in the sequence) is accepted only with a certain probability that depends on the values of the current record and the candidate. We develop a systematic analytic approximation scheme for the DRP. At finite UU the fitness frequency distribution of the population decomposes into a stationary part due to mutations and a traveling wave component due to selection, which is shown to imply a reduction of the mean fitness by a factor of 1U1-U compared to the U0U \to 0 limit.Comment: Dedicated to Thomas Nattermann on the occasion of his 60th birthday. Submitted to JSTAT. Error in Section 3.2 was correcte

    Measurement of Strange Quark Contributions to the Nucleon's Form Factors at Q^2=0.230 (GeV/c)^2

    Get PDF
    We report on a measurement of the parity-violating asymmetry in the scattering of longitudinally polarized electrons on unpolarized protons at a Q2Q^2 of 0.230 (GeV/c)^2 and a scattering angle of \theta_e = 30^o - 40^o. Using a large acceptance fast PbF_2 calorimeter with a solid angle of \Delta\Omega = 0.62 sr the A4 experiment is the first parity violation experiment to count individual scattering events. The measured asymmetry is A_{phys} =(-5.44 +- 0.54_{stat} +- 0.27_{\rm sys}) 10^{-6}. The Standard Model expectation assuming no strangeness contributions to the vector form factors is A0=(6.30+0.43)106A_0=(-6.30 +- 0.43) 10^{-6}. The difference is a direct measurement of the strangeness contribution to the vector form factors of the proton. The extracted value is G^s_E + 0.225 G^s_M = 0.039 +- 0.034 or F^s_1 + 0.130 F^s_2 = 0.032 +- 0.028.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Letters on Dec 11, 200

    Identity work in different entrepreneurial settings:dominant interpretive repertoires and divergent striving agendas

    Get PDF
    This paper examines how entrepreneurs within different settings reflect on social interactions to work on their identity. Using life story narratives, we explore a business membership network and a creative hub in the central belt of Scotland. Our subsequent model shows how individuals in these settings use different dominant interpretive repertoires, as represented by structural-instrumental work in the business network and relational work in the creative hub. We also show how the interpretive repertoires both shape and are shaped by what individuals strive for in their identity work: striving for esteem and striving for closeness. We discuss how our findings offer insight into the dynamics of social identities and how they are reproduced and maintained through situated exchange using specific interpretive repertoires and striving agendas

    Моделі процесів захисту цілісності інформаційних об’єктів з використанням коду умовних лишків. Алгоритм нулізації

    Get PDF
    The models of processes of defense of integrity of information’s holding object with application of code of conditional tailings which provide high probabilities of exposure of violations of integrity and correction of the exposed curvatures are examined
    corecore