29,290 research outputs found
Silicon halide-alkali metal flames as a source of solar grade silicon
The feasibility of using alkali metal-silicon halide diffusion flames to produce solar-grade silicon in large quantities and at low cost is demonstrated. Prior work shows that these flames are stable and that relatively high purity silicon can be produced using Na + SiCl4 flames. Silicon of similar purity is obtained from Na + SiF4 flames although yields are lower and product separation and collection are less thermochemically favored. Continuous separation of silicon from the byproduct alkali salt was demonstrated in a heated graphite reactor. The process was scaled up to reduce heat losses and to produce larger samples of silicon. Reagent delivery systems, scaled by a factor of 25, were built and operated at a production rate of 0.5 kg Si/h. Very rapid reactor heating rates are observed with wall temperatures reaching greater than 2000 K. Heat release parameters were measured using a cooled stainless steel reactor tube. A new reactor was designed
Quantum field effects in coupled atomic and molecular Bose-Einstein condensates
This paper examines the parameter regimes in which coupled atomic and
molecular Bose-Einstein condensates do not obey the Gross-Pitaevskii equation.
Stochastic field equations for coupled atomic and molecular condensates are
derived using the functional positive-P representation. These equations
describe the full quantum state of the coupled condensates and include the
commonly used Gross-Pitaevskii equation as the noiseless limit. The model
includes all interactions between the particles, background gas losses,
two-body losses and the numerical simulations are performed in three
dimensions. It is found that it is possible to differentiate the quantum and
semiclassical behaviour when the particle density is sufficiently low and the
coupling is sufficiently strong.Comment: 4 postscript figure
Travelling waves in wound healing
We illustrate the role of travelling waves in wound healing by considering three different cases. Firstly, we review a model for surface wound healing in the cornea and focus on the speed of healing as a function of the application of growth factors. Secondly, we present a model for scar tissue formation in deep wounds and focus on the role of key chemicals in determining the quality of healing. Thirdly, we propose a model for excessive healing disorders and investigate how abnormal healing may be controlled
Thermodynamic properties of Pb determined from pressure-dependent critical-field measurements
We have carried out extensive low-temperature (1.5 to 10 K) measurements of
the critical field, , for the element Pb up to a pressure of GPa.
From this data the electronic entropy, specific heat, thermal expansion
coefficient and compressibility is calculated as a function of temperature,
pressure and magnetic field. The zero-field data is consistent with direct
thermodynamic measurements and the -dependence of and specific heat
coefficient, allows the determination of the -dependence of
the pairing interaction.Comment: 5 pages, 6 figures, in press Phys. Rev.
Measurement of the interaction strength in a Bose-Fermi mixture with 87Rb and 40K
A quantum degenerate, dilute gas mixture of bosonic and fermionic atoms was
produced using 87Rb and 40K. The onset of degeneracy was confirmed by observing
the spatial distribution of the gases after time-of-flight expansion. Further,
the magnitude of the interspecies scattering length between the doubly spin
polarized states of 87Rb and 40K, |a_RbK|, was determined from
cross-dimensional thermal relaxation. The uncertainty in this collision
measurement was greatly reduced by taking the ratio of interspecies and
intraspecies relaxation rates, yielding |a_RbK| = 250 +/- 30 a_0, which is a
lower value than what was reported in [M. Modugno et al., Phys. Rev. A 68,
043626 (2003)]. Using the value for |a_RbK| reported here, current T=0 theory
would predict a threshold for mechanical instability that is inconsistent with
the experimentally observed onset for sudden loss of fermions in [G. Modugno et
al., Science 297, 2240 (2002)].Comment: RevTeX4 + 4 eps figures; Replaced with published versio
vbyCaHbeta CCD Photometry of Clusters. VIII. The Super-Metal Rich, Old Open Cluster NGC 6791
CCD photometry on the intermediate-band vbyCaHbeta system is presented for
the metal-rich, old open cluster, NGC 6791. Preliminary analysis led to [Fe/H]
above +0.4 with an anomalously high reddening and an age below 5 Gyr. A revised
calibration between (b-y)_0 and [Fe/H] at a given temperature shows that the
traditional color-metallicity relations underestimate the color of the turnoff
stars at high metallicity. With the revised relation, the metallicity from hk
and the reddening for NGC 6791 become [Fe/H] = +0.45 +/- 0.04 and E(b-y) =
0.113 +/- 0.012 or E(B-V) = 0.155 +/- 0.016. Using the same technique,
reanalysis of the photometry for NGC 6253 produces [Fe/H] = +0.58 +/-0.04 and
E(b-y) = 0.120 +/- 0.018 or E(B-V) = 0.160 +/- 0.025. The errors quoted include
both the internal and external errors. For NGC 6791, the metallicity from m_1
is a factor of two below that from hk, a result that may be coupled to the
consistently low metal abundance from DDO photometry of the cluster and the
C-deficiency found from high dispersion spectroscopy. E(B-V) is the same value
predicted from Galactic reddening maps. With E(B-V) = 0.15 and [Fe/H] = +0.45,
the available isochrones predict an age of 7.0 +/- 1.0 Gyr and an apparent
modulus of (m-M) = 13.60 +/- 0.15, with the dominant source of the uncertainty
arising from inconsistencies among the isochrones. The reanalysis of NGC 6253
with the revised lower reddening confirms that on both the hk and m_1
metallicity scales, NGC 6253, while less than half the age of NGC 6791, remains
at least as metal-rich as NGC 6791, if not richer.Comment: Accepted for Astronomical Journal. 42 p. latex file includes 11
figures and 3 tables, one of which is a short version of a data table to
appear in online AJ in its entiret
Neutron activation analysis traces copper artifacts to geographical point of origin
Impurities remaining in the metallic copper are identified and quantified by spectrographic and neutron activation analysis. Determination of the type of ore used for the copper artifact places the geographic point of origin of the artifact
vbyCaHbeta CCD Photometry of Clusters. VI. The Metal-Deficient Open Cluster NGC 2420
CCD photometry on the intermediate-band vbyCaHbeta system is presented for
the metal-deficient open cluster, NGC 2420. Restricting the data to probable
single members of the cluster using the CMD and the photometric indices alone
generates a sample of 106 stars at the cluster turnoff. The average E(b-y) =
0.03 +/- 0.003 (s.e.m.) or E(B-V) = 0.050 +/- 0.004 (s.e.m.), where the errors
refer to internal errors alone. With this reddening, [Fe/H] is derived from
both m1 and hk, using b-y and Hbeta as the temperature index. The agreement
among the four approaches is reasonable, leading to a final weighted average of
[Fe/H] = -0.37 +/- 0.05 (s.e.m.) for the cluster, on a scale where the Hyades
has [Fe/H] = +0.12. When combined with the abundances from DDO photometry and
from recalibrated low-resolution spectroscopy, the mean metallicity becomes
[Fe/H] = -0.32 +/- 0.03. It is also demonstrated that the average cluster
abundances based upon either DDO data or low-resolution spectroscopy are
consistently reliable to 0.05 dex or better, contrary to published attempts to
establish an open cluster metallicity scale using simplistic offset corrections
among different surveys.Comment: scheduled for Jan. 2006 AJ; 33 pages, latex, includes 7 figures and 2
table
Observation of Heteronuclear Feshbach Resonances in a Bose-Fermi Mixture
Three magnetic-field induced heteronuclear Feshbach resonances were
identified in collisions between bosonic 87Rb and fermionic 40K atoms in their
absolute ground states. Strong inelastic loss from an optically trapped mixture
was observed at the resonance positions of 492, 512, and 543 +/- 2 G. The
magnetic-field locations of these resonances place a tight constraint on the
triplet and singlet cross-species scattering lengths, yielding -281 +/- 15 Bohr
and -54 +/- 12 Bohr, respectively. The width of the loss feature at 543 G is
3.7 +/- 1.5 G wide; this broad Feshbach resonance should enable experimental
control of the interspecies interactions.Comment: revtex4 + 5 EPS figure
- …