4,861 research outputs found

    Matrix Models and Lorentz Invariance

    Full text link
    The question of Lorentz invariance in the membrane matrix model is addresse

    A multiflare horn with 1-megawatt power handling capability

    Get PDF
    The design and testing of the prototype horn for the proposed 1-megawatt radar are described. The unique features of this square horn include a multiflare design in which flare angle changes rather than corrugations are used to generate the required higher-order modes. A five-port combining section is used at the input. The design of this section and the multiflare section are described. Measured radiation patterns are in good agreement with theoretical patterns

    Long-term amplitude and phase stability of the 400-kW 2.115-GHz transmitter

    Get PDF
    Results of recent measurements of the long-term phase, amplitude and group delay stability of the 400-kW S-band (2.115-GHz) transmitter are reported. Various control parameters which are responsible for many of the observed instabilities are identified. Further tests to identify the parameters responsible for the remaining instabilities are suggested

    Thermal measurements of microwave transmitter feedhorn window

    Get PDF
    Thermal measurements of microwave transmitter feedhorn windows were performed using an imaging infrared radiometer. The measurement technique is described and results are presented for windows made of 0.001-in. Kapton (trademark of Dupont Chemical Co.) and 0.1-in. HTP-6 (Space Shuttle tile material). Measured and calculated temperatures agree well

    Nonmonotonic Evolution of the Blocking Temperature in Dispersions of Superparamagnetic Nanoparticles

    Full text link
    We use a Monte Carlo approach to simulate the influence of the dipolar interaction on assemblies of monodisperse superparamagnetic γ−Fe2O3{\gamma}-Fe_{2}O_{3} nanoparticles. We have identified a critical concentration c*, that marks the transition between two different regimes in the evolution of the blocking temperature (TBT_{B}) with interparticle interactions. At low concentrations (c < c*) magnetic particles behave as an ideal non-interacting system with a constant TBT_{B}. At concentrations c > c* the dipolar energy enhances the anisotropic energy barrier and TBT_{B} increases with increasing c, so that a larger temperature is required to reach the superparamagnetic state. The fitting of our results with classical particle models and experiments supports the existence of two differentiated regimes. Our data could help to understand apparently contradictory results from the literature.Comment: 13 pages, 7 figure

    Conceptual design of a 1-MW CW X-band transmitter for planetary radar

    Get PDF
    A proposed conceptual design to increase the output power of an existing X-band radar transmitter used for planetary radar exploration from 365 kW to 1 MW CW is presented. The basic transmitter system requirements as dictated by the specifications for the radar are covered. The characteristics and expected performance of the high-power klystrons are considered, and the transmitter power amplifier system is described. Also included is the design of all of the associated high-power microwave components, the feed system, and the phase-stable exciter. The expected performance of the beam supply, heat exchanger, and monitor and control devices is also presented. Finally, an assessment of the state-of-the-art technology needed to meet system requirements is given and possible areas of difficulty are summarized

    Network growth model with intrinsic vertex fitness

    Get PDF
    © 2013 American Physical SocietyWe study a class of network growth models with attachment rules governed by intrinsic node fitness. Both the individual node degree distribution and the degree correlation properties of the network are obtained as functions of the network growth rules. We also find analytical solutions to the inverse, design, problems of matching the growth rules to the required (e.g., power-law) node degree distribution and more generally to the required degree correlation function. We find that the design problems do not always have solutions. Among the specific conditions on the existence of solutions to the design problems is the requirement that the node degree distribution has to be broader than a certain threshold and the fact that factorizability of the correlation functions requires singular distributions of the node fitnesses. More generally, the restrictions on the input distributions and correlations that ensure solvability of the design problems are expressed in terms of the analytical properties of their generating functions

    Why Matrix theory works for oddly shaped membranes

    Get PDF
    We give a simple proof of why there is a Matrix theory approximation for a membrane shaped like an arbitrary Riemann surface. As corollaries, we show that noncompact membranes cannot be approximated by matrices and that the Poisson algebra on any compact phase space is U(infinity). The matrix approximation does not appear to work properly in theories such as IIB string theory or bosonic membrane theory where there is no conserved 3-form charge to which the membranes couple.Comment: 8 pages, 4 figures, revtex; references adde
    • …
    corecore