4,126 research outputs found

    Cereal Leaf Beetle (Coleoptera: Chrysomelidae) Influence of Seeding Rate of Oats on Populations

    Get PDF
    In field and greenhouse studies, more cereal leaf beetle [Oulema melanopus (Lin- naeus)] eggs and larvae were found per unit area on spring oats, Avena sativa L., planted either at intermediate (54 kg/ha) or high (136 kg/ha) seeding rates, than when planted at a lower seeding rate (14 kg/ha). However, there were fewer eggs and larvae per stem in plantings of the high or intermediate rates than in those of the lower rate. Oats should not be planted at less than the recommended rates in beetle-infested areas

    Laparoscopic versus open colorectal resection for cancer and polyps: A cost-effectiveness study

    Get PDF
    Methods: Participants were recruited in 2006-2007 in a district general hospital in the south of England; those with a diagnosis of cancer or polyps were included in the analysis. Quality of life data were collected using EQ-5D, on alternate days after surgery for 4 weeks. Costs per patient, from a National Health Service perspective (in British pounds, 2006) comprised the sum of operative, hospital, and community costs. Missing data were filled using multiple imputation methods. The difference in mean quality adjusted life years and costs between surgery groups were estimated simultaneously using a multivariate regression model applied to 20 imputed datasets. The probability that laparoscopic surgery is cost-effective compared to open surgery for a given societal willingness-to-pay threshold is illustrated using a cost-effectiveness acceptability curve

    The proposed flatland radar

    Get PDF
    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information

    Application of Risk Informed Decision Making to Highly Reliable Three Dimensionally Woven Thermal Protection System for Mars Sample Return

    Get PDF
    The NASA Risk Informed Decision Making process is used to assess a trade space of three dimensionally woven thermal protection systems for application to the Mars Sample Return Earth Entry Vehicle. Candidate architectures are assessed based on mission assurance, technical development, cost, and schedule risk. Assessment methodology differed between the architectures, utilizing a four-point quantitative scale for mission assurance and technical development and highly tailored PERT techniques for cost and schedule. Risk results are presented, in addition to a review of RIDM effectiveness for this application

    Measurement of vertical velocity using clear-air Doppler radars

    Get PDF
    A new clear air Doppler radar was constructed, called the Flatland radar, in very flat terrain near Champaign-Urbana, Illinois. The radar wavelength is 6.02 m. The radar has been measuring vertical velocity every 153 s with a range resolution of 750 m almost continuously since March 2, 1987. The variance of vertical velocity at Flatland is usually quite small, comparable to the variance at radars located near rough terrain during periods of small background wind. The absence of orographic effects over very flat terrain suggests that clear air Doppler radars can be used to study vertical velocities due to other processes, including synoptic scale motions and propagating gravity waves. For example, near rough terrain the shape of frequency spectra changes drastically as the background wind increases. But at Flatland the shape at periods shorter than a few hours changes only slowly, consistent with the changes predicted by Doppler shifting of gravity wave spectra. Thus it appears that the short period fluctuations of vertical velocity at Flatland are alsmost entirely due to the propagating gravity waves

    Cereal Leaf Beetle (Coleoptera: Chrysomelidae) Influence of Seeding Rate of Oats on Populations

    Get PDF
    In field and greenhouse studies, more cereal leaf beetle [Oulema melanopus (Lin- naeus)] eggs and larvae were found per unit area on spring oats, Avena sativa L., planted either at intermediate (54 kg/ha) or high (136 kg/ha) seeding rates, than when planted at a lower seeding rate (14 kg/ha). However, there were fewer eggs and larvae per stem in plantings of the high or intermediate rates than in those of the lower rate. Oats should not be planted at less than the recommended rates in beetle-infested areas

    Analysis of some global optimization algorithms for space trajectory design

    Get PDF
    In this paper, we analyze the performance of some global search algorithms on a number of space trajectory design problems. A rigorous testing procedure is introduced to measure the ability of an algorithm to identify the set of ²-optimal solutions. From the analysis of the test results, a novel algorithm is derived. The development of the novel algorithm starts from the redefinition of some evolutionary heuristics in the form of a discrete dynamical system. The convergence properties of this discrete dynamical system are used to derive a hybrid evolutionary algorithm that displays very good performance on the particular class of problems presented in this paper

    Local dynamics of gap-junction-coupled interneuron networks

    Full text link
    Interneurons coupled by both electrical gap-junctions (GJs) and chemical GABAergic synapses are major components of forebrain networks. However, their contributions to the generation of specific activity patterns, and their overall contributions to network function, remain poorly understood. Here we demonstrate, using computational methods, that the topological properties of interneuron networks can elicit a wide range of activity dynamics, and either prevent or permit local pattern formation. We systematically varied the topology of GJ and inhibitory chemical synapses within simulated networks, by changing connection types from local to random, and changing the total number of connections. As previously observed we found that randomly coupled GJs lead to globally synchronous activity. In contrast, we found that local GJ connectivity may govern the formation of highly spatially heterogeneous activity states. These states are inherently temporally unstable when the input is uniformly random, but can rapidly stabilize when the network detects correlations or asymmetries in the inputs. We show a correspondence between this feature of network activity and experimental observations of transient stabilization of striatal fast-spiking interneurons (FSIs), in electrophysiological recordings from rats performing a simple decision-making task. We suggest that local GJ coupling enables an active search-and-select function of striatal FSIs, which contributes to the overall role of cortical-basal ganglia circuits in decision-making.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85426/1/ph10_1_016015.pd

    Enabling Entry Technologies for Ice Giant Missions

    Get PDF
    The highest priority science goals for Ice Giant missions are: 1) Interior structure of the Planet, and 2) Bulk composition that includes isotopes and noble gases. The interaction between the planetary interior and the atmosphere requires sustained global measurements. Noble gas and Isotope measurements require in situ measurement. Drag modulated aerocapture utilizing ADEPT offers more mass delivered to the Ice Giants than with propulsive orbit insertion. The Galileo Probe entered at a hot spot which created interpretation challenges. Juno is providing valuable orbital measurements, but without in situ measurements the story is incomplete. Planetary scientists interested in Ice Giant missions should perform mission design studies with these new Entry System technologies to assess the feasibility within the context of the international collaboration framework. A mission architecture that includes probe(s) along with an orbiting spacecraft can deploy the probes at the desired location while taking simultaneous measurements from orbit to provide invaluable data that can correlate both global and local measurements. Entry System Technologies currently being developed by NASA are poised to enable missions that position the Orbiter & Probes through drag modulated aerocapture (ADEPT), and HEEET enables the Probes to survive the extreme environments encountered for entry into the atmospheric interior

    Shaped nozzles for cryogenic buffer gas beam sources

    Get PDF
    Cryogenic buffer gas beams are important sources of cold molecules. In this work we explore the use of a converging-diverging nozzle with a buffer-gas beam. We find that, under appropriate circumstances, the use of a nozzle can produce a beam with improved collimation, lower transverse temperatures, and higher fluxes per solid angle
    • …
    corecore