805 research outputs found

    A new method of quantization of classical solutions

    Get PDF
    Using stochastic quantization method we derive equations for correlators of quantum fluctuations around the classical solution in the massless phi^4 theory. The obtained equations are then solved in the lowest orders of perturbation theory, and the first correction to the free propagator of a quantum fluctuation is calculated.Comment: 8 page

    Ultrafast dynamics of coherences in the quantum Hall system

    Full text link
    Using three-pulse four-wave-mixing optical spectroscopy, we study the ultrafast dynamics of the quantum Hall system. We observe striking differences as compared to an undoped system, where the 2D electron gas is absent. In particular, we observe a large off-resonant signal with strong oscillations. Using a microscopic theory, we show that these are due to many-particle coherences created by interactions between photoexcited carriers and collective excitations of the 2D electron gas. We extract quantitative information about the dephasing and interference of these coherences.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let

    One- and two-proton transfer reactions with vibrational Nuclei

    Get PDF
    We extend a semiclassical model of transfer reactions to the case in which one of the collision partners is a vibrational nucleus. The model is applied to one- and two-proton stripping reactions in the 37Cl + 98Mo system, for which a rapid transition from normal to anomalous slope in the two proton transfer reaction at energies around the Coulomb barrier is experimentally observed. This behavior is satisfactorily reproduced by the present extension of the model.Comment: LaTeX, 10 pages, 1 figure (PostScript

    Dynamical Evolution of Boson Stars II: Excited States and Self-Interacting Fields

    Full text link
    The dynamical evolution of self-gravitating scalar field configurations in numerical relativity is studied. The previous analysis on ground state boson stars of non-interacting fields is extended to excited states and to fields with self couplings. Self couplings can significantly change the physical dimensions of boson stars, making them much more astrophysically interesting (e.g., having mass of order 0.1 solar mass). The stable (SS) and unstable (UU) branches of equilibrium configurations of boson stars of self-interacting fields are studied; their behavior under perturbations and their quasi-normal oscillation frequencies are determined and compared to the non-interacting case. Excited states of boson stars with and without self-couplings are studied and compared. Excited states also have equilibrium configurations with SS and UU branch structures; both branches are intrinsically unstable under a generic perturbation but have very different instability time scales. We carried out a detailed study of the instability time scales of these configurations. It is found that highly excited states spontaneously decay through a cascade of intermediate states similar to atomic transitions.Comment: 16 pages+ 13 figures . All figures are available at http://wugrav.wustl.edu/Paper

    Role of Present and Future Atomic Parity Violation Experiments in Precision Electroweak Tests

    Get PDF
    Recent reanalyses of the atomic physics effects on the weak charge in cesium have led to a value in much closer agreement with predictions of the Standard Model. We review precision electroweak tests, their implications for upper bounds on the mass of the Higgs boson, possible ways in which these bounds may be circumvented, and the requirements placed upon accuracy of future atomic parity violation experiments by these considerations.Comment: 10 pages, LaTeX, 1 figure, to be submitted to Physical Review D, new data on neutrino deep inelastic scattering include

    Finite element approximation of the p()p(\cdot)-Laplacian

    Full text link
    We study a~priori estimates for the Dirichlet problem of the p()p(\cdot)-Laplacian, div(vp()2v)=f.-\mathrm{div}(|\nabla v|^{p(\cdot)-2} \nabla v) = f. We show that the gradients of the finite element approximation with zero boundary data converges with rate O(hα)O(h^\alpha) if the exponent pp is α\alpha-H\"{o}lder continuous. The error of the gradients is measured in the so-called quasi-norm, i.e. we measure the L2L^2-error of vp22v|\nabla v|^{\frac{p-2}{2}} \nabla v

    On the evaluation of some three-body variational integrals

    Get PDF
    Stable recursive relations are presented for the numerical computation of the integrals dr1dr2r1l1r2m1r12n1exp{αr1βr2γr12}\int d{\bf r}_1 d{\bf r}_2 r_1^{l-1} r_2^{m-1} r_{12}^{n-1} \exp{\{-\alpha r_1 -\beta r_2 -\gamma r_{12}\}} (ll, mm and nn integer, α\alpha, β\beta and γ\gamma real) when the indices ll, mm or nn are negative. Useful formulas are given for particular values of the parameters α\alpha, β\beta and γ\gamma.Comment: 12 pages, 1 figure (PS) and 3 tables. Old figures 2 and 3 replaced by Tables I and III. A further table added. Paper enlarged giving some tips on the convergence of quadrature

    Evaluation of the self-energy correction to the g-factor of S states in H-like ions

    Full text link
    A detailed description of the numerical procedure is presented for the evaluation of the one-loop self-energy correction to the gg-factor of an electron in the 1s1s and 2s2s states in H-like ions to all orders in ZαZ\alpha.Comment: Final version, December 30, 200

    2s Hyperfine Structure in Hydrogen Atom and Helium-3 Ion

    Get PDF
    The usefulness of study of hyperfine splitting in the hydrogen atom is limited on a level of 10 ppm by our knowledge of the proton structure. One way to go beyond 10 ppm is to study a specific difference of the hyperfine structure intervals 8 Delta nu_2 - Delta nu_1. Nuclear effects for are not important this difference and it is of use to study higher-order QED corrections.Comment: 10 pages, presented at Hydrogen Atom II meeting (2000
    corecore