76,027 research outputs found

    On a dynamic reaction-diffusion mechanism: The spatial patterning of teeth primordia in the alligator

    Get PDF
    It is now well established both theoretically and, more recently, experimentally, that steady-state spatial chemical concentration patterns can be formed by a number of specific reaction–diffusion systems. Reaction–diffusion models have been widely applied to biological pattern formation problems. Here we propose a model mechanism for the initiation and spatial positioning of teeth primordia in the alligator, Alligator mississippiensis, which, from a reaction–diffusion theory, introduces, among other things, a new element, namely the effect of domain growth on dynamic spatial pattern formation. Detailed embryological studies by Westergaard and Ferguson (B. Westergaard and M. W. J. Ferguson, J. Zool. Lond., 1986, 210, 575; 1987, 212, 191; Am. J. Anatomy, 1990, 187, 393) show that jaw growth plays a crucial role in the developmental patterning of the tooth initiation process. Based on biological data we develop a reaction–diffusion mechanism, which crucially includes domain growth. The model can reproduce the spatial pattern development of the first seven teeth primordia in the lower half jaw of A. mississippiensis. The results for the precise spatio temporal sequence compare well with detailed developmental experiments

    Network formation of tissue cells via preferential attraction to elongated structures

    Full text link
    Vascular and non-vascular cells often form an interconnected network in vitro, similar to the early vascular bed of warm blooded embryos. Our time-lapse recordings show that the network forms by extending sprouts, i.e., multicellular linear segments. To explain the emergence of such structures, we propose a simple model of preferential attraction to stretched cells. Numerical simulations reveal that the model evolves into a quasi-stationary pattern containing linear segments, which interconnect above the critical volume fraction of 0.2. In the quasi-stationary state the generation of new branches offset the coarsening driven by surface tension. In agreement with empirical data, the characteristic size of the resulting polygonal pattern is density-independent within a wide range of volume fractions

    Synthetic Chemotaxis and Collective Behavior in Active Matter

    Full text link
    Conspectus: The ability to navigate in chemical gradients, called chemotaxis, is crucial for the survival of microorganisms. It allows them to find food and to escape from toxins. Many microorganisms can produce the chemicals to which they respond themselves and use chemotaxis for signalling which can be seen as a basic form of communication. Remarkably, the past decade has let to the development of synthetic microswimmers like e.g. autophoretic Janus colloids, which can self-propel through a solvent, analogously to bacteria and other microorganims. The mechanism underlying their self-propulsion involves the production of certain chemicals. The same chemicals involved in the self-propulsion mechanism also act on other microswimmers and bias their swimming direction towards (or away from) the producing microswimmer. Synthetic microswimmers therefore provide a synthetic analogue to chemotactic motile microorganisms. When these interactions are attractive, they commonly lead to clusters, even at low particle density. These clusters may either proceed towards macrophase separation, resembling Dictyostelium aggregation, or, as shown very recently, lead to dynamic clusters of self-limited size (dynamic clustering) as seen in experiments in autophoretic Janus colloids. Besides the classical case where chemical interactions are attractive, this Account discusses, as its main focus, repulsive chemical interactions, which can create a new and less known avenue to pattern formation in active systems leading to a variety of pattern, including clusters which are surrounded by shells of chemicals, travelling waves and more complex continously reshaping patterns. In all these cases `synthetic signalling' can crucially determine the collective behavior of synthetic microswimmer ensembles and can be used as a design principle to create patterns in motile active particles

    Relativistic Resonant Relations between Massive Black Hole Binary and Extreme Mass Ratio Inspiral

    Full text link
    One component of a massive black hole binary (MBHB) might capture a small third body, and then a hierarchical, inclined triple system would be formed. With the post-Newtonian approximation including radiation reaction, we analyzed the evolution of the triple initially with small eccentricities. We found that an essentially new resonant relation could arise in the triple system. Here relativistic effects are crucial. Relativistic resonances, including the new one, stably work even for an outer MBHB of comparable masses, and significantly change the orbit of the inner small body.Comment: 9 pages, 5 figures, to appear in PR

    Comparison of nonlinear dynamic inversion and inverse simulation

    Get PDF
    No abstract available

    The effects of tidally induced disc structure on white dwarf accretion in intermediate polars

    Full text link
    We investigate the effects of tidally induced asymmetric disc structure on accretion onto the white dwarf in intermediate polars. Using numerical simulation, we show that it is possible for tidally induced spiral waves to propagate sufficiently far into the disc of an intermediate polar that accretion onto the central white dwarf could be modulated as a result. We suggest that accretion from the resulting asymmetric inner disc may contribute to the observed X-ray and optical periodicities in the light curves of these systems. In contrast to the stream-fed accretion model for these periodicities, the tidal picture predicts that modulation can exist even for systems with weaker magnetic fields where the magnetospheric radius is smaller than the radius of periastron of the mass transfer stream. We also predict that additional periodic components should exist in the emission from low mass ratio intermediate polars displaying superhumps.Comment: 9 pages, 5 figures, accepted for publication in MNRA

    Analysis of a Model Biological Switch

    Get PDF
    A model mechanism proposed by Murray [Phil. Traps. Roy. Soc. London B, 295 (1981), pp. 473–496] for generating wing patterns and eyespots on butterflies and moths is based on a morphogen (S) activated biological switch for a gene product (g). We analyse one of the resulting partial differential equation systems, namely S_t = DΔS - kS, g_t = k_tS + αg (g-k_2) (g_c-g ), where D,k,k_1 ,k_2 ,g_c > k_2 and α are positive constants. We determine analytically the size of the spatial domain where g → g_c as t → ∞ after an influx of S at the origin. This gives the size of the eyespot in terms of the mechanism parameters. The analytical problem is a nontrivial singular perturbation expansion which we discuss in detail

    Median-Unbiased Estimation in DF-GLS Regressions and the PPP Puzzle

    Get PDF
    Using median-unbiased estimation based on Augmented-Dickey-Fuller (ADF) regressions, recent research has questioned the validity of Rogoff's "remarkable consensus" of 3-5 year half-lives of deviations from PPP. The confidence intervals of these half-life estimates, however, are extremely wide, with lower bounds of about one year and upper bounds of infinity. We extend median-unbiased estimation to the DF-GLS regression of Elliott, Rothenberg, and Stock (1996). We find that combining median-unbiased estimation with this regression has the potential to tighten confidence intervals for the half-lives. Using long horizon real exchange rate data, we find that the typical lower bound of the confidence intervals for median-unbiased half-lives is just under 3 years. Thus, while previous confidence intervals for median-unbiased half-lives are consistent with virtually anything, our tighter confidence intervals are inconsistent with economic models with nominal rigidities as candidates for explaining the observed behavior of real exchange rates and move us away from solving the PPP puzzle.PPP puzzle, median-unbiased, persistence.
    corecore