1,826 research outputs found

    Couplings of N=1 chiral spinor multiplets

    Full text link
    We derive the action for chiral spinor multiplets coupled to vector and scalar multiplets. We give the component form of the action, which contains gauge invariant mass terms for the antisymmetric tensors in the spinor superfield and additional Green-Schwarz couplings to vector fields. We observe that supersymmetry provides mass terms for the scalars in the spinor multiplet which do not arise from eliminating an auxiliary field. We construct the dual action by explicitly performing the duality transformations in superspace and give its component form.Comment: 17 pages, v2 small change

    Rigid N=2 superconformal hypermultiplets

    Get PDF
    We discuss superconformally invariant systems of hypermultiplets coupled to gauge fields associated with target-space isometries.Comment: Invited talk given at the International Seminar "Supersymmetries and Quantum Symmetries", July 1997, Dubna. Latex, 9 p

    Supersymmetric Randall-Sundrum Scenario

    Get PDF
    We present the supersymmetric version of the minimal Randall-Sundrum model with two opposite tension branes.Comment: Latex, 9 pages. Published versio

    M/M/∞\infty queues in semi-Markovian random environment

    Full text link
    In this paper we investigate an M/M/∞\infty queue whose parameters depend on an external random environment that we assume to be a semi-Markovian process with finite state space. For this model we show a recursive formula that allows to compute all the factorial moments for the number of customers in the system in steady state. The used technique is based on the calculation of the raw moments of the measure of a bidimensional random set. Finally the case when the random environment has only two states is deeper analyzed. We obtain an explicit formula to compute the above mentioned factorial moments when at least one of the two states has sojourn time exponentially distributed.Comment: 17 pages, 2 figure

    An effective method to estimate multidimensional Gaussian states

    Get PDF
    A simple and efficient method for characterization of multidimensional Gaussian states is suggested and experimentally demonstrated. Our scheme shows analogies with tomography of finite dimensional quantum states, with the covariance matrix playing the role of the density matrix and homodyne detection providing Stern-Gerlach-like projections. The major difference stems from a different character of relevant noises: while the statistics of Stern-Gerlach-like measurements is governed by binomial statistics, the detection of quadrature variances correspond to chi-square statistics. For Gaussian and near Gaussian states the suggested method provides, compared to standard tomography techniques, more stable and reliable reconstructions. In addition, by putting together reconstruction methods for Gaussian and arbitrary states, we obtain a tool to detect the non-Gaussian character of optical signals.Comment: 8 pages, 5 fis, accepted for publication on PR

    Pure Spinor Approach to Type IIA Superstring Sigma Models and Free Differential Algebras

    Full text link
    This paper considers the Free Differential Algebra and rheonomic parametrization of type IIA Supergravity, extended to include the BRS differential and the ghosts. We consider not only the ghosts lambda's of supersymmetry but also the ghosts corresponding to gauge and Lorentz transformations. In this way we can derive not only the BRS transformations of fields and ghosts but also the standard pure spinor constraints on lambda's. Moreover the formalism allows to derive the action for the pure spinor formulation of type IIA superstrings in a general background, recovering the action first obtained by Berkovits and Howe.Comment: 1+23 pages, v2: added clarifications and a reference, misprints corrected, v3: presentation improved, results unchange

    Characterization of bipartite states using a single homodyne detector

    Full text link
    We suggest a scheme to reconstruct the covariance matrix of a two-mode state using a single homodyne detector plus a polarizing beam splitter and a polarization rotator. It can be used to fully characterize bipartite Gaussian states and to extract relevant informations on generic states.Comment: 7 pages, 1 figur

    Quantum Decoherence of Single-Photon Counters

    Full text link
    The interaction of a quantum system with the environment leads to the so-called quantum decoherence. Beyond its fundamental significance, the understanding and the possible control of this dynamics in various scenarios is a key element for mastering quantum information processing. Here we report the quantitative probing of what can be called the quantum decoherence of detectors, a process reminiscent of the decoherence of quantum states in the presence of coupling with a reservoir. We demonstrate how the quantum features of two single-photon counters vanish under the influence of a noisy environment. We thereby experimentally witness the transition between the full-quantum operation of the measurement device to the "semi-classical regime", described by a positive Wigner function. The exact border between these two regimes is explicitely determined and measured experimentally

    Metastable de Sitter vacua in N=2 to N=1 truncated supergravity

    Get PDF
    We study the possibility of achieving metastable de Sitter vacua in general N=2 to N=1 truncated supergravities without vector multiplets, and compare with the situations arising in N=2 theories with only hypermultiplets and N=1 theories with only chiral multiplets. In N=2 theories based on a quaternionic manifold and a graviphoton gauging, de Sitter vacua are necessarily unstable, as a result of the peculiar properties of the geometry. In N=1 theories based on a Kahler manifold and a superpotential, de Sitter vacua can instead be metastable provided the geometry satisfies some constraint and the superpotential can be freely adjusted. In N=2 to N=1 truncations, the crucial requirement is then that the tachyon of the mother theory be projected out from the daughter theory, so that the original unstable vacuum is projected to a metastable vacuum. We study the circumstances under which this may happen and derive general constraints for metastability on the geometry and the gauging. We then study in full detail the simplest case of quaternionic manifolds of dimension four with at least one isometry, for which there exists a general parametrization, and study two types of truncations defining Kahler submanifolds of dimension two. As an application, we finally discuss the case of the universal hypermultiplet of N=2 superstrings and its truncations to the dilaton chiral multiplet of N=1 superstrings. We argue that de Sitter vacua in such theories are necessarily unstable in weakly coupled situations, while they can in principle be metastable in strongly coupled regimes.Comment: 40 pages, no figure

    Alleviating the non-ultralocality of coset sigma models through a generalized Faddeev-Reshetikhin procedure

    Get PDF
    The Faddeev-Reshetikhin procedure corresponds to a removal of the non-ultralocality of the classical SU(2) principal chiral model. It is realized by defining another field theory, which has the same Lax pair and equations of motion but a different Poisson structure and Hamiltonian. Following earlier work of M. Semenov-Tian-Shansky and A. Sevostyanov, we show how it is possible to alleviate in a similar way the non-ultralocality of symmetric space sigma models. The equivalence of the equations of motion holds only at the level of the Pohlmeyer reduction of these models, which corresponds to symmetric space sine-Gordon models. This work therefore shows indirectly that symmetric space sine-Gordon models, defined by a gauged Wess-Zumino-Witten action with an integrable potential, have a mild non-ultralocality. The first step needed to construct an integrable discretization of these models is performed by determining the discrete analogue of the Poisson algebra of their Lax matrices.Comment: 31 pages; v2: minor change
    • 

    corecore