66 research outputs found
Effect of Calcination and Reduction Temperatures on the Reduction and Activity of Boron-modified Co/TiO2 Fischer-Tropsch Catalys
The effect of calcination and reduction temperatures on the reducibility, dispersion and Fischer-Tropsch activity of 10 wt% cobalt supported on titania catalyst modified by 0.1 wt% boron has been studied. The percentage reduction and percentage dispersion were found to decrease with increasing calcination temperature. The higher calcination temperatures decreased the total CO hydrogenation activity, but did not affect the turnover frequency. The decrease in CO hydrogenation rate with increasing calcination temperature is attributed to a decrease in the number of surface active sites. The higher reduction temperature also decreased the total activity. This may be due to the loss of the surface active sites, caused by blocking of the TiOc phases produced at higher reduction temperatures. The higher calcination temperature shifted the F-T product spectrum to the lower weight hydrocarbons. The reduction temperature did not affect the product selectivity.
South African Journal of Chemistry Vol.57 2004: 49-5
Effect of Cobalt Source on the Catalyst Reducibility and Activity of Boron-modified Co / TiO2 Fischer-Tropsch Catalysts
The effect of cobalt precursor (nitrate, acetate and chloride salts) on the catalyst reducibility and dispersion, as well as the catalytic activity of the Fischer-Tropsch (FT) synthesis, of boron-modified titania-supported cobalt catalysts (0.1%B/10%Co/TiO2) has been investigated. FT studies were performed on both calcined and uncalcined catalysts prepared from the three cobalt sources. The uncalcined nitrate catalyst showed a higher activity for FT synthesis compared to the uncalcined acetate and chloride catalysts. For the calcined catalysts, the acetate and nitrate catalysts exhibited higher FT activity. The low activity associated with the chloride catalyst related to poisoning by residual chloride ions. Calcination was found to enhance the extent of cobalt bulk reduction and FT activity for all three of the catalysts. The FT reaction rate increased with increasing percentage cobalt dispersion while the turnover frequency (TOF) was found be near independent of cobalt source.
South African Journal of Chemistry Vol.56 2003: 1-
IN SITU AND POST REACTION COBALT-INCORPORATION INTO AMINOPROPYL-MODIFIED PERIODIC MESOPOROUS ORGANOSILICA MATERIALS
Bifunctional periodic mesoporous organosilica materials with and without cobalt ion incorporation were synthesized by co-condensation of 1,2-bistrimethoxysilylethane (BTME) with 3-aminopropyltriethoxysilane (APTS) in the presence of cetyltrimethylammonium bromide. Cobalt was incorporated onto APTS-modified ethylene-bridged silica materials by in situ and by incipient wetness addition methods. The periodicity of the new materials is indicated by the presence of low angle diffraction peaks found in the XRD profiles (pore size ca. 40 nm). The surface area, pore volume and pore diameter of the new ethylene-bridged silica materials decreased with increasing loading of APTS as well as after cobalt incorporation. Thermogravimetric analysis and Raman spectroscopy show that the surfactant is removed by solvent extraction. Cobalt ion incorporation is confirmed by Raman spectroscopy and UV-vis diffuse reflectance spectroscopy.
KEY WORDS: Bifunctional periodic mesoporous organosilica, 1,2-bistrimethoxysilylethane, 3-aminopropyltriethoxysilane, Sol-gel, Cobalt
Bull. Chem. Soc. Ethiop. 2005, 19(2), 197-212
The Synthesis of Carbon Nanomaterials using Chlorinated Hydrocarbons over a Fe-Co/CaCO3 Catalyst
The effect of chlorine on the morphology of carbon nanotubes (CNTs) prepared from a Fe-Co/CaCO3 catalyst was investigated using chlorobenzene (CB), dichlorobenzene (DCB), trichlorobenzene (TCB), dichloroethane (DCE), trichloroethane (TCE) and tetrachloroethane (TTCE) as chlorine sources using a catalytic chemical vapour deposition (CCVD) method. Toluene was used as a chlorine-free carbon source for comparison. Multi-walled carbon nanotubes (MWCNTs) were successfully synthesized. The physicochemical properties of the CNTs were studied using transmission electron microscopy (TEM), Raman spectroscopy, thermal gravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (PXRD) spectroscopy, and X-ray photoelectron spectroscopy (XPS) techniques. The inner and outer diameters of the MWCNTs increased with an increase in the number of chlorine atoms contained in the reactant. Chlorine incorporation into the MWCNTs was observed by EDS analysis for all reactants. Formation of ‘bamboo-like’ structures for the MWCNTs generated from TCE and TTCE was also observed, facilitated by the presence of the high percentage of chlorine in these reactants. Numerous MWCNTs revealed the presence of small carbon nanostructures that grew on top of the dominant CNTs, suggesting an unexpected secondary carbon growth mechanism.KEYWORDS Multi-walled carbon nanotubes, CVD, synthesis, chlorine, benzenes, ethanes
A review of shaped carbon nanomaterials
Materials made of carbon that can be synthesised and characterised at the nano level have become a mainstay in the nanotechnology arena. These carbon materials can have a remarkable range of morphologies. They can have structures that are either hollow or filled and can take many shapes, as evidenced by the well-documented families of fullerenes and carbon nanotubes. However, these are but two of the shapes that carbon can form at the nano level. In this review we outline the types of shaped carbons that can be produced by simple synthetic procedures, focusing on spheres, tubes or fibres, and helices. Their mechanisms of formation and uses are also described
Microwave treatment: a facile method for the solid state modification of potassium-promoted iron on silica Fischer-Tropsch catalysts
Potassium-promoted (0–1.5 wt%) iron–silica catalysts for Fischer–Tropsch synthesis (FTS) have been modified using microwave radiation. Radiation produced few or no modifications in the bulk properties, but surface and catalytic behaviour were markedly changed in K promoted 10 wt% of Fe/SiO2 (10Fe/SiO2) catalysts. The effect of potassium on CO adsorption was relatively insignificant in untreated catalysts, but was large in microwave-modified catalysts. Radiation induced an increase in CH4 formation in CO + H2 temperature programmed surface reactions. Microwave treatment promoted CH4 formation from graphitic carbon in these catalysts, while decreasing CH4 formation from α- and β-carbon species, and overall favoured strong CO adsorption onto the catalyst surface. Microwave effects were catalyst particle size and treatment duration-dependent. At low alkali concentration, microwaved samples showed improved ethene selectivities, higher alpha values and lower methane and light alkene selectivities. When 0.7 wt% K was added to the 10Fe/SiO2 catalyst, the α value increased from 0.59 to 0.66 after treatment of the sample with microwave radiation in the solid state
Direct visualisation of the surface atomic active sites of carbon-supported Co3O4 nanocrystals via high-resolution phase restoration
The atomic arrangement of the terminating facets on spinel Co3O4 nanocrystals is strongly linked to their catalytic performance. However, the spinel crystal structure offers multiple possible surface terminations depending on the synthesis. Thus, understanding the terminating surface atomic structure is essential in developing high-performance Co3O4 nanocrystals. In this work, we present direct atomic-scale observation of the surface terminations of Co3O4 nanoparticles supported on hollow carbon spheres (HCSs) using exit wavefunction reconstruction from aberration-corrected transmission electron microscopy focal-series. The restored high-resolution phases show distinct resolved oxygen and cobalt atomic columns. The data show that the structure of {100}, {110}, and {111} facets of spinel Co3O4 exhibit characteristic active sites for carbon monoxide (CO) adsorption, in agreement with density functional theory calculations. Of these facets, the {100} and {110} surface terminations are better suited for CO adsorption than the {111}. However, the presence of oxygen on the {111} surface termination indicates this facet also plays an essential role in CO adsorption. Our results demonstrate direct evidence of the surface termination atomic structure beyond the assumed stoichiometry of the surface
Origin of conductivity cross over in entangled multi-walled carbon nanotube network filled by iron
A realistic transport model showing the interplay of the hopping transport
between the outer shells of iron filled entangled multi-walled carbon nanotubes
(MWNT) and the diffusive transport through the inner part of the tubes, as a
function of the filling percentage, is developed. This model is based on
low-temperature electrical resistivity and magneto-resistance (MR)
measurements. The conductivity at low temperatures showed a crossover from
Efros-Shklovski (E-S) variable range hopping (VRH) to Mott VRH in 3 dimensions
(3D) between the neighboring tubes as the iron weight percentage is increased
from 11% to 19% in the MWNTs. The MR in the hopping regime is strongly
dependent on temperature as well as magnetic field and shows both positive and
negative signs, which are discussed in terms of wave function shrinkage and
quantum interference effects, respectively. A further increase of the iron
percentage from 19% to 31% gives a conductivity crossover from Mott VRH to 3D
weak localization (WL). This change is ascribed to the formation of long iron
nanowires at the core of the nanotubes, which yields a long dephasing length
(e.g. 30 nm) at the lowest measured temperature. Although the overall transport
in this network is described by a 3D WL model, the weak temperature dependence
of inelastic scattering length expressed as L_phi ~T^-0.3 suggests the
possibility for the presence of one-dimensional channels in the network due to
the formation of long Fe nanowires inside the tubes, which might introduce an
alignment in the random structure.Comment: 29 pages,10 figures, 2 tables, submitted to Phys. Rev.
Deciphering the structural, textural, and electrochemical properties of activated BN-doped spherical carbons
In this study, the effect of K2CO3 activation on the structural, textural, and electrochemical
properties of carbon spheres (CSs) and boron and nitrogen co-doped carbon spheres (BN-CSs) was
evaluated. Activation of the CSs and BN-CSs by K2CO3 resulted in increased specific surface areas
and ID/IG ratios. From the X-ray photoelectron spectroscopy (XPS) results, the BN-CSs comprised
of 64% pyridinic-N, 24% pyrrolic-N and 7% graphitic-N whereas the activated BN-CSs had 19%
pyridinic-N, 40% pyrrolic-N and 22% graphitic-N displaying the effect of activation on the type of
N configurations in BN-CSs. A possible BN-co-doping and activation mechanism for the BN-CSs
is proposed. Electrochemical analysis of the electrode materials revealed that BN doping, carbon
morphology, structure, and porosity played a crucial role in enhancing the capacitive behavior of
the CSs. As a proof of concept, a symmetric device comprising the activated BN-CSs displayed a
specific power of 800 W kg 1 at a specific current of 1 A g 1 within an operating cell potential of
1.6 V in a 3 M KNO3 electrolyte. The study illustrated for the first time the role of K2CO3 activation
in influencing the physical and surface properties of template-free activated BN-CSs as potential
electrode materials for energy storage systems.The South African Research Chairs Initiative of the
Department of Science and Technology and the National Research Foundation of South Africa (Grant No. 61056). B.K.M. and B.J.M. would like to thank the University of the
Witwatersrand and the DST-NRF Centre of Excellence in Strong Materials (CoESM) for financial support. B.K.M.
would also like to acknowledge financial support from the NRF and the University of Pretoria for her postdoctoral
fellowship grant.http://www.mdpi.com/journal/nanomaterialsam2019Physic
Post doped nitrogen-decorated hollow carbon spheres as a support for Co Fischer-Tropsch catalysts
In this study the outer surface of porous hollow carbon spheres (HCSs) materials were functionalized by N-doping using a post-synthesis method and they were used as a Fischer-Tropsch catalyst support. Melamine was used as the nitrogen source, and carbonization was performed at different temperatures (600 and 900 °C) to introduce variable levels of N into the HCSs, with different bonding configurations. This procedure allowed for the incorporation of up to 13% N. Our results show that post-synthesis N-doping introduced marginal defects into the carbon framework and this did not affect the thermal stability of the materials. XPS studies revealed that the surface content on these materials varied and provided evidence for temperature-tunable bonding configurations. Effects associated with post-synthesis N-doping were apparent on the Co catalyst (˜10 wt.%) properties such as the inhibited reduction caused by a metal-support interaction observed by the H2-TPR and in situ PXRD techniques. As a consequence the Fischer-Tropsch performance was influenced as both the activity and stability were improved on the catalysts supported on the N-doped materials. TEM analysis of the spent catalysts demonstrated the influence of N-doping on the sintering characteristics of Co, with particles > 30 nm measured on the N-free catalyst while N-doped samples had sizes < 15 nm
- …