960 research outputs found
Trichloroethylene Extracted Soybean Oil Meal Poisoning
Studies conducted at Iowa State College during the past 10 months show that a fatal disease can be produced in cattle when fed certain batches of commercially prepared trichloroethylene-extracted soybean meal
Does the Great Valley Group Contain Jurassic Strata? Reevaluation of the Age and Early Evolution of a Classic Forearc Basin
The presence of Cretaceous detrital zircon in Upper Jurassic strata of the Great Valley Group may require revision of the lower Great Valley Group chronostratigraphy, with significant implications for the Late Jurassic–Cretaceous evolution of the continental margin. Samples (n = 7) collected from 100 km along strike in the purported Tithonian strata of the Great Valley Group contain 20 Cretaceous detrital zircon grains, based on sensitive high-resolution ion microprobe age determinations. These results suggest that Great Valley Group deposition was largely Cretaceous, creating a discrepancy between biostratigraphy based on Buchia zones and chronostratigraphy based on radiometric age dates. These results extend the duration of the Great Valley Group basal unconformity, providing temporal separation between Great Valley forearc deposition and creation of the Coast Range Ophiolite. If Great Valley forearc deposition began in Cretaceous time, then sediment bypassed the developing forearc in the Late Jurassic, or the Franciscan subduction system did not fully develop until Cretaceous time. In addition to these constraints on the timing of deposition, pre-Mesozoic detrital zircon age signatures indicate that the Great Valley Group was linked to North America from its inception
Constraints on Gamma-ray Emission from the Galactic Plane at 300 TeV
We describe a new search for diffuse ultrahigh energy gamma-ray emission
associated with molecular clouds in the galactic disk. The Chicago Air Shower
Array (CASA), operating in coincidence with the Michigan muon array (MIA), has
recorded over 2.2 x 10^{9} air showers from April 4, 1990 to October 7, 1995.
We search for gamma rays based upon the muon content of air showers arriving
from the direction of the galactic plane. We find no significant evidence for
diffuse gamma-ray emission, and we set an upper limit on the ratio of gamma
rays to normal hadronic cosmic rays at less than 2.4 x 10^{-5} at 310 TeV (90%
confidence limit) from the galactic plane region: (50 degrees < l < 200
degrees); -5 degrees < b < 5 degrees). This limit places a strong constraint on
models for emission from molecular clouds in the galaxy. We rule out
significant spectral hardening in the outer galaxy, and conclude that emission
from the plane at these energies is likely to be dominated by the decay of
neutral pions resulting from cosmic rays interactions with passive target gas
molecules.Comment: Astrophysical Journal, submitted, 11 pages, AASTeX Latex, 3
Postscript figure
OSETI with STACEE: A Search for Nanosecond Optical Transients from Nearby Stars
We have used the STACEE high-energy gamma-ray detector to look for fast
blue-green laser pulses from the vicinity of 187 stars. The STACEE detector
offers unprecedented light-collecting capability for the detection of
nanosecond pulses from such lasers. We estimate STACEE's sensitivity to be
approximately 10 photons per square meter at a wavelength of 420 nm. The stars
have been chosen because their characteristics are such that they may harbor
habitable planets and they are relatively close to Earth. Each star was
observed for 10 minutes and we found no evidence for laser pulses in any of the
data sets.Comment: 38 pages, 12 figures. Accepted for publication in Astrobiolog
Very high-energy observations of the two high-frequency peaked BL Lac objects 1ES 1218+304 and H 1426+428
We present results of very-high-energy gamma-ray observations (E > 160 GeV)
of two high-frequency-peaked BL Lac (HBL) objects, 1ES 1218+304 and H 1426+428,
with the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE). Both
sources are very-high-energy gamma-ray emitters above 100 GeV, detected using
ground-based Cherenkov telescopes. STACEE observations of 1ES 1218+304 and H
1426+428 did not produce detections; we present 99% CL flux upper limits for
both sources, assuming spectral indices measured mostly at higher energies
The Central Laser Facility at the Pierre Auger Observatory
The Central Laser Facility is located near the middle of the Pierre Auger
Observatory in Argentina. It features a UV laser and optics that direct a beam
of calibrated pulsed light into the sky. Light scattered from this beam
produces tracks in the Auger optical detectors which normally record nitrogen
fluorescence tracks from cosmic ray air showers. The Central Laser Facility
provides a "test beam" to investigate properties of the atmosphere and the
fluorescence detectors. The laser can send light via optical fiber
simultaneously to the nearest surface detector tank for hybrid timing analyses.
We describe the facility and show some examples of its many uses.Comment: 4 pages, 5 figures, submitted to 29th ICRC Pune Indi
Detection of Atmospheric Cherenkov Radiation Using Solar Heliostat Mirrors
The gamma-ray energy region between 20 and 250 GeV is largely unexplored.
Ground-based atmospheric Cherenkov detectors offer a possible way to explore
this region, but large Cherenkov photon collection areas are needed to achieve
low energy thresholds. This paper discusses the development of a Cherenkov
detector using the heliostat mirrors of a solar power plant as the primary
collector. As part of this development, we built a prototype detector
consisting of four heliostat mirrors and used it to record atmospheric
Cherenkov radiation produced in extensive air showers created by cosmic ray
particles.Comment: 16 latex pages, 8 postscript figures, uses psfig.sty, to be published
in Astroparticle Physic
- …