373 research outputs found

    OMEGA AND BIASING FROM OPTICAL GALAXIES VERSUS POTENT MASS

    Full text link
    The mass density field in the local universe, recovered by the POTENT method from peculiar velocities of ∼\sim3000 galaxies, is compared with the density field of optically-selected galaxies. Both density fields are smoothed with a Gaussian filter of radius 12 h−1h^{-1} Mpc. Under the assumptions of gravitational instability and a linear biasing parameter b\sbo between optical galaxies and mass, we obtain \beta\sbo \equiv \om^{0.6}/b\sbo = 0.74 \pm 0.13. This result is obtained from a regression of POTENT mass density on optical density after correcting the mass density field for systematic biases in the velocity data and POTENT method. The error quoted is just the 1σ1\sigma formal error estimated from the observed scatter in the density--density scatterplot; it does not include the uncertainty due to cosmic scatter in the mean density or in the biasing relation. We do not attempt a formal analysis of the goodness of fit, but the scatter about the fit is consistent with our estimates of the uncertainties.Comment: Final revised version (minor typos corrected). 13 pages, gzipped tar file containing LaTeX and figures. The Postscript file is available at ftp://dust0.dur.ac.uk/pub/mjh/potopt/potopt.ps.Z or (gzipped) at ftp://xxx.lanl.gov/astro-ph/ps/9501/9501074.ps.gz or via WWW at http://xxx.lanl.gov/ps/astro-ph/9501074 or as separate LaTeX text and encapsulated Postscript figures in a compressed tar'd file at ftp://dust0.dur.ac.uk/pub/mjh/potopt/latex/potopt.tar.

    Shellflow. I. The Convergence of the Velocity Field at 6000 km/s

    Full text link
    We present the first results from the Shellflow program, an all-sky Tully-Fisher (TF) peculiar velocity survey of 276 Sb-Sc galaxies with redshifts between 4500 and 7000 km/s. Shellflow was designed to minimize systematic errors between observing runs and between telescopes, thereby removing the possibility of a spurious bulk flow caused by data inhomogeneity. A fit to the data yields a bulk flow amplitude V_bulk = 70{+100}{-70} km/s (1 sigma error) with respect to the Cosmic Microwave Background, i.e., consistent with being at rest. At the 95% confidence level, the flow amplitude is < 300 km/s. Our results are insensitive to which Galactic extinction maps we use, and to the parameterization of the TF relation. The larger bulk motion found in analyses of the Mark III peculiar velocity catalog are thus likely to be due to non-uniformities between the subsamples making up Mark III. The absence of bulk flow is consistent with the study of Giovanelli and collaborators and flow field predictions from the observed distribution of IRAS galaxies.Comment: Accepted version for publication in ApJ. Includes an epitaph for Jeffrey Alan Willick (Oct 8, 1959 - Jun 18, 2000

    Fitting functions for a disk-galaxy model with different LCDM-halo profiles

    Full text link
    We present an adaptation of the standard scenario of disk-galaxy formation to the concordant LCDM cosmology aimed to derive analytical expressions for the scale length and rotation speed of present-day disks that form within four different, cosmologically motivated protogalactic dark matter halo-density profiles. We invoke a standard galaxy-formation model that includes virial equilibrium of spherical dark halos, specific angular momentum conservation during gas cooling, and adiabatic halo response to the gas inflow. The mean mass-fraction and mass-to-light ratio of the central stellar disk are treated as free parameters whose values are tuned to match the zero points of the observed size-luminosity and circular speed-luminosity relations of galaxies. We supply analytical formulas for the characteristic size and rotation speed of disks built inside Einasto r^{1/6}, Hernquist, Burkert, and Navarro-Frenk-White dark matter halos. These expressions match simultaneously the observed zero points and slopes of the different correlations that can be built in the RVL space of disk galaxies from plausible values of the galaxy- and star-formation efficiencies

    High Angular Resolution JHK Imaging of the Centers of the Metal-Poor Globular Clusters NGC5272 (M3), NGC6205 (M13), NGC6287, and NGC6341 (M92)

    Full text link
    The Canada-France-Hawaii Telescope (CFHT) Adaptive Optics Bonnette (AOB) has been used to obtain high angular resolution JHK images of the centers of the metal-poor globular clusters NGC5272 (M3), NGC6205 (M13), NGC6287, and NGC6341 (M92). The color-magnitude diagrams (CMDs) derived from these data include the upper main sequence and most of the red giant branch (RGB), and the cluster sequences agree with published photometric measurements of bright stars in these clusters. The photometric accuracy is limited by PSF variations, which introduce systematic errors of a few hundredths of a magnitude near the AO reference star. The clusters are paired according to metallicity, and the near-infrared CMDs and luminosity functions are used to investigate the relative ages within each pair. The near-infrared CMDs provide the tightest constraints on the relative ages of the classical second parameter pair NGC5272 and NGC6205, and indicate that these clusters have ages that differ by no more than +/- 1 Gyr. These results thus support the notion that age is not the second parameter. We tentatively conclude that NGC6287 and NGC6341 have ages that differ by no more than +/- 2 Gyr. However, the near-infrared spectral energy distributions of stars in NGC6287 appear to differ from those of stars in outer halo clusters, bringing into question the validity of this age estimate.Comment: 22 pages, 17 figures. To be published in the Astronomical Journa

    Integrated Stellar Populations: Confronting Photometry with Spectroscopy

    Full text link
    We investigate the ability of spectroscopic techniques to yield realistic star formation histories (SFHs) for the bulges of spiral galaxies based on a comparison with their observed broadband colors. Full spectrum fitting to optical spectra indicates that recent (within ~1 Gyr) star formation activity can contribute significantly to the V-band flux, whilst accounting for only a minor fraction of the stellar mass budget which is made up primarily of old stars. Furthermore, recent implementations of stellar population (SP) models reveal that the inclusion of a more complete treatment of the thermally pulsating asymptotic giant branch (TP-AGB) phase to SP models greatly increases the NIR flux for SPs of ages 0.2-2 Gyr. Comparing the optical--NIR colors predicted from population synthesis fitting, using models which do not include all stages of the TP-AGB phase, to the observed colors reveals that observed optical--NIR colors are too red compared to the model predictions. However, when a 1 Gyr SP from models including a full treatment the TP-AGB phase is used, the observed and predicted colors are in good agreement. This has strong implications for the interpretation of stellar populations, dust content, and SFHs derived from colors alone.Comment: 6 pages, 6 figures, accepted for publication in the Astrophysical Journa
    • …
    corecore