162 research outputs found

    A General Route to Diverse Mesoporous Metal Oxide Submicrospheres with Highly Crystalline Frameworks

    Get PDF
    通讯作者地址: Wang, JF (通讯作者), Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong Peoples R China 地址: 1. Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong Peoples R China 2. Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA 电子邮件地址: [email protected], [email protected] NSF 0233728 NASA URETI NCC-1-02037 HK RGC Research 2060332 NSFC/RGC joint Research Scheme N_CUHK448/06 290031

    Broadband Coupling into a Single-Mode, Electroactive Integrated Optical Waveguide for Spectroelectrochemical Analysis of Surface-Confined Redox Couples

    Get PDF
    Pushing the sensitivity of spectroelectrochemical techniques to routinely monitor changes in spectral properties of thin molecular films (i.e., monolayer or submonolayer) adsorbed on an electrode surface has been a goal of many investigators since the earliest developments in this field. 1 It was initially recognized that exploiting the evanescent field generated by total internal reflection at the interface of an optically transparent electrode (such as a thin film of tin oxide or indium tin oxide (ITO) on glass or quartz) has the inherent advantage of selectively probing only the near-surface region, as opposed to bulk sampling with transmission based techniques. Furthermore, by utilizing the multiple reflections in an attenuated total reflectance (ATR) geometry, an enhancement in sensitivity can be realized, and as the thickness of the ATR element is decreased, the number of reflections increases, yielding a substantial sensitivity enhancement. [2][3][4][5][6] Itoh and Fujishima were the first to show the advantages of reducing the thickness of an ATR element overcoated with a transparent conductive oxide to the integrated optical waveguide (IOW) regime. Using a four-mode, gradient index waveguide coated with a transparent, conductive tin oxide layer, they demonstrated large sensitivity enhancements, relative to a single pass transmission experiment, for spectroelectrochemical measurements of methylene blue. 7,8 Other research groups subsequently described similar gradient index, multilayer, electroactive waveguide structures, but they did not make use of the technology to explore the spectroelectrochemistry of (sub)monolayer coverage films. [9][10][11][12][13] We recently described a single-mode, electroactive planar IOW (the EA-IOW) having a step refractive index profile. It was fabricated by sputtering a Corning 7059 glass layer (400 nm) over soda lime glass or quartz, followed by a 200-nm layer of SiO 2

    ON THE DECOMPOSITION OF METHANE, ETHANE AND ETHYLENE BY ELECTRIC SPARK

    No full text
    corecore