16 research outputs found

    On an asymptotic estimate of the nn-loop correction in perturbative QCD

    Full text link
    A recently proposed method of estimating the asymptotic behaviour of QCD perturbation theory coefficients is critically reviewed and shown to contain numerous invalid mathematical operations and unsubstantiated assumptions. We discuss in detail why this procedure, based solely on renormalization group (RG) considerations and analyticity constraints, cannot lead to such estimates. We stress the importance of correct renormalization scheme (RS) dependence of any meaningful asymptotic estimate and argue that the unambiguous summation of QCD perturbation expansions for physical quantities requires information from outside of perturbation theory itself.Comment: PRA-HEP-92/17, Latex, 20 pages of text plus 5 figures contained in 5 separate PS files. Four of them (corresponding to Figs.1,2,3,5) are appended at the end of this file, the (somewhat larger one) corresponding to Fig.4 can be obtained from any of the mentioned E-mail addresses upon request. E-mail connections: J. Chyla - [email protected]) or h1kchy@dhhdesy3 P. Kolar - [email protected]

    On parton distributions beyond the leading order

    Full text link
    The importance of properly taking into account the factorization scheme dependence of parton distribution functions is emphasized. A serious error in the usual handling of this topic is pointed out and the correct procedure for transforming parton distribution functions from one factorisation scheme to another recalled. It is shown that the conventional MS\overline{\rm {MS}} and DIS definitions thereof are ill-defined due to the lack of distinction between the factorisation scheme dependence of parton distribution functions and renormalisation scheme dependence of the strong coupling constant αs\alpha_s. A novel definition of parton distribution functions is suggested and its role in the construction of consistent next-to-leading order event generators briefly outlined.Comment: PRA-HEP-93/05, Latex, 10 pages and 2 Postscript figures appended at the end of this fil

    On QCD analysis of stucture function F2γF_2^{\gamma} in alternative approach

    Full text link
    The alternative approach to QCD analysis of the photon structure function F2γF_2^{\gamma} is presented. It differs from the conventional one by the presence of the terms which in conventional approach appear in higher orders. We show that this difference concerns also the photonic parton distribution functions. In the alternative approach, the complete LO analysis of F2γF_2^{\gamma} can be performed as all required quantities are known. At the NLO, however, one of the coefficient function is so far not available and thus only the photonic parton distribution function can be computed and compared to those of standard approach. We discuss the numerical difference of these approaches at the LO and the NLO approximation and show that in case of F2γF_2^{\gamma} this difference is non-negligible and may play an important role in the analysis on photon data of the future experiments.Comment: 25 page

    Relating Physical Observables in QCD without Scale-Scheme Ambiguity

    Full text link
    We discuss the St\"uckelberg-Peterman extended renormalization group equations in perturbative QCD, which express the invariance of physical observables under renormalization-scale and scheme-parameter transformations. We introduce a universal coupling function that covers all possible choices of scale and scheme. Any perturbative series in QCD is shown to be equivalent to a particular point in this function. This function can be computed from a set of first-order differential equations involving the extended beta functions. We propose the use of these evolution equations instead of perturbative series for numerical evaluation of physical observables. This formalism is free of scale-scheme ambiguity and allows a reliable error analysis of higher-order corrections. It also provides a precise definition for ΛMS\Lambda_{\overline{\rm MS}} as the pole in the associated 't Hooft scheme. A concrete application to R(e+ehadrons)R(e^+e^- \to {\rm hadrons}) is presented.Comment: Plain TEX, 4 figures (available upon request), 22 pages, DOE/ER/40322-17

    On dynamically generated parton distribution functions and their properties

    Get PDF
    The idea of ``dynamically'' generated parton distribution functions, based on regular initial conditions at low momentum scale, is reanalyzed with particular emphasize paid to its compatibility with the factorization mechanism. Basic consequences of this approach are discussed and compared to those of the conventional approach, employing singular initial distribution functions.Comment: 15 pages, Latex, 5 figures in PS format attache

    Renormalization Scheme Dependence and the Problem of Theoretical Uncertainties in Next-Next-to-Leading Order QCD Predictions

    Get PDF
    Renormalization scheme uncertainties in the next-next-to-leading order QCD predictions are discussed. To obtain an estimate of these uncertainties it is proposed to compare predictions in all schemes that do not have unnaturally large expansion coefficients. A concrete prescription for eliminating the unnatural schemes is given, based on the requirement that large cancellations in the expression for the characteristic renormalization scheme invariant should be avoided. As an example the QCD corrections to the Bjorken sum rule are considered. The importance of the next-next-to-leading order corrections for a proper evaluation of perturbative QCD predictions is emphasized.Comment: 15 pages, 3 figures,Late

    Optimization of R(e+e-) and "Freezing" of the QCD Couplant at Low Energies

    Full text link
    The new result for the third-order QCD corrections to R_{e^+e^-}, unlike the old, incorrect result, is nicely compatible with the principle-of-minimal-sensitivity optimization method. Moreover, it leads to infrared fixed-point behaviour: the optimized couplant, alpha_s/pi, for R(e+e-) does not diverge at low energies, but "freezes" to a value 0.26 below about 300 MeV. This provides some direct theoretical evidence, purely from perturbation theory, for the "freezing" of the couplant -- an idea that has long been a popular and successful phenomenological hypothesis. We use the "smearing" method of Poggio, Quinn, and Weinberg to compare the resulting theoretical prediction for R(e+e-) with experimental data down to the lowest energies, and find excellent agreement.Comment: 27 pages, LaTeX, 8 uuencoded figures, DE-FG05-92ER40717-

    The renormalization group inspired approaches and estimates of the tenth-order corrections to the muon anomaly in QED

    Get PDF
    We present the estimates of the five-loop QED corrections to the muon anomaly using the scheme-invariant approaches and demonstrate that they are in good agreement with the results of exact calculations of the corresponding tenth-order diagrams supplemented by the additional guess about the values of the non-calculated contributions.Comment: LATEX 15 pages, figures available upon request; preprint CERN-TH.7518/9
    corecore