649 research outputs found

    Time-domain modelling of Extreme-Mass-Ratio Inspirals for the Laser Interferometer Space Antenna

    Full text link
    When a stellar-mass compact object is captured by a supermassive black hole located in a galactic centre, the system losses energy and angular momentum by the emission of gravitational waves. Subsequently, the stellar compact object evolves inspiraling until plunging onto the massive black hole. These EMRI systems are expected to be one of the main sources of gravitational waves for the future space-based Laser Interferometer Space Antenna (LISA). However, the detection of EMRI signals will require of very accurate theoretical templates taking into account the gravitational self-force, which is the responsible of the stellar-compact object inspiral. Due to its potential applicability on EMRIs, the obtention of an efficient method to compute the scalar self-force acting on a point-like particle orbiting around a massive black hole is being object of increasing interest. We present here a review of our time-domain numerical technique to compute the self-force acting on a point-like particle and we show its suitability to deal with both circular and eccentric orbits.Comment: 4 pages, 2 figures, JPCS latex style. Submitted to JPCS (special issue for the proceedings of the Spanish Relativity Meeting (ERE2010)

    The Kinematic and Plasma Properties of X-ray Knots in Cassiopeia A from the Chandra HETGS

    Full text link
    We present high-resolution X-ray spectra from the young supernova remnant Cas A using a 70-ks observation taken by the Chandra High Energy Transmission Grating Spectrometer (HETGS). Line emission, dominated by Si and S ions, is used for high-resolution spectral analysis of many bright, narrow regions of Cas A to examine their kinematics and plasma state. These data allow a 3D reconstruction using the unprecedented X-ray kinematic results: we derive unambiguous Doppler shifts for these selected regions, with values ranging between -2500 and +4000 km/s. Plasma diagnostics of these regions, derived from line ratios of resolved He-like triplet lines and H-like lines of Si, indicate temperatures largely around 1 keV, which we model as O-rich reverse-shocked ejecta. The ionization age also does not vary considerably over these regions of the remnant. The gratings analysis was complemented by the non-dispersed spectra from the same dataset, which provided information on emission measure and elemental abundances for the selected Cas A regions. The derived electron density of X-ray emitting ejecta varies from 20 to 200 cm^{-3}. The measured abundances of Mg, Si, S and Ca are consistent with O being the dominant element in the Cas A plasma. With a diameter of 5 arcmin, Cas A is the largest source observed with the HETGS to date. We, therefore, describe the technique we use and some of the challenges we face in the HETGS data reduction from such an extended, complex object.Comment: 26 pages, 16 figures, evised version (minor changes), accepted for publication in ApJ (Oct 20 2006

    Chandra Observations of the X-ray Narrow-Line Region in NGC 4151

    Get PDF
    We present the first high-resolution X-ray spectrum of the Seyfert 1.5 galaxy NGC 4151. Observations with the Chandra High Energy Transmission Grating Spectrometer reveal a spectrum dominated by narrow emission lines from a spatially resolved (1.6 kpc), highly ionized nebula. The X-ray narrow-line region is composite, consisting of both photoionized and collisionally ionized components. The X-ray emission lines have similar velocities, widths, and spatial extent to the optical emission lines, showing that they arise in the same region. The clouds in the narrow-line region must contain a large range of ionization states in order to explain both the optical and X-ray photoionized emission. Chandra data give the first direct evidence of X-ray line emission from a hot plasma (T~1e7 K) which may provide pressure confinement for the cooler (T=3e4 K) photoionized clouds.Comment: 13 pages, 3 figures, to be published in Astrophysical Journal Letter

    Ionization Structure and the Reverse Shock in E0102-72

    Get PDF
    The young oxygen-rich supernova remnant E0102-72 in the Small Magellanic Cloud has been observed with the High Energy Transmission Grating Spectrometer of Chandra. The high resolution X-ray spectrum reveals images of the remnant in the light of individual emission lines of oxygen, neon, magnesium and silicon. The peak emission region for hydrogen-like ions lies at larger radial distance from the SNR center than the corresponding helium-like ions, suggesting passage of the ejecta through the "reverse shock". We examine models which test this interpretation, and we discuss the implications.Comment: 4 pages, 6 figures; To appear in "Young Supernova Remnants" (11th Annual Astrophysics Conference in Maryland), S. S. Holt & U. Hwang (eds), AIP, New York (2001

    High-Resolution X-ray Spectroscopy of SNR 1987A: Chandra LETG and HETG Observations in 2007

    Full text link
    We present an extended analysis of the deep Chandra LETG and HETG observations of the supernova remnant 1987A (SNR 1987A) carried out in 2007. The global fits to the grating spectra show that the temperature of the X-ray emitting plasma in the slower shocks in this system has remained stable for the last three years, while that in the faster shocks has decreased. This temperature evolution is confirmed by the first light curves of strong X-ray emission lines and their ratios. On the other hand, bulk gas velocities inferred from the X-ray line profiles are too low to account for the post-shock plasma temperatures inferred from spectral fits. This suggests that the X-ray emission comes from gas that has been shocked twice, first by the blast wave and again by shocks reflected from the inner ring of SNR 1987A. A new model that takes these considerations into account gives support to this physical picture.Comment: 36 pages, 10 figures, Accepted for publication in Ap

    A Chandra View of the Normal SO Galaxy NGC 1332: II: Solar Abundances in the Hot Gas and Implications for SN Enrichment

    Full text link
    We present spectral analysis of the diffuse emission in the normal, isolated, moderate-Lx S0 NGC 1332, constraining both the temperature profile and the metal abundances in the ISM. The characteristics of the point source population and the gravitating matter are discussed in two companion papers. The diffuse emission comprises hot gas, with an ~isothermal temperature profile (~0.5 keV), and emission from unresolved point-sources. In contrast with the cool cores of many groups and clusters, we find a small central temperature peak. We obtain emission-weighted abundance contraints within 20 kpc for several key elements: Fe, O, Ne, Mg and Si. The measured iron abundance (Z_Fe=1.1 in solar units; >0.53 at 99% confidence) strongly excludes the very sub-solar values often historically reported for early-type galaxies but agrees with recent observations of brighter galaxies and groups. The abundance ratios, with respect to Fe, of the other elements were also found to be ~solar, although Z_o/Z_Fe was significantly lower (<0.4). Such a low O abundance is not predicted by simple models of ISM enrichment by Type Ia and Type II supernovae, and may indicate a significant contribution from primordial hypernovae. Revisiting Chandra observations of the moderate-Lx, isolated elliptical NGC 720, we obtain similar abundance constraints. Adopting standard SNIa and SNII metal yields, our abundance ratio constraints imply 73+/-5% and 85+/-6% of the Fe enrichment in NGC 1332 and NGC 720, respectively, arises from SNIa. Although these results are sensitive to the considerable systematic uncertainty in the SNe yields, they are in good agreement with observations of more massive systems. These two moderate-Lx early-type galaxies reveal a consistent pattern of metal enrichment from cluster scales to moderate Lx/Lb galaxies. (abridged)Comment: 12 pages, 4 figures, accepted for publication in ApJ. Minor changes to match published versio

    An HST/COS Observation of Broad Lyα\alpha Emission and Associated Absorption Lines of the BL Lacertae Object H 2356-309

    Full text link
    Weak spectral features in BL Lacertae objects (BL Lac) often provide a unique opportunity to probe the inner region of this rare type of active galactic nucleus. We present a Hubble Space Telescope/Cosmic Origins Spectrograph observation of the BL Lac H 2356-309. A weak Lyα\alpha emission line was detected. This is the fourth detection of a weak Lyα\alpha emission feature in the ultraviolet (UV) band in the so-called "high energy peaked BL Lacs", after Stocke et al. Assuming the line-emitting gas is located in the broad line region (BLR) and the ionizing source is the off-axis jet emission, we constrain the Lorentz factor (Γ\Gamma) of the relativistic jet to be ≥8.1\geq 8.1 with a maximum viewing angle of 3.6∘^\circ. The derived Γ\Gamma is somewhat larger than previous measurements of Γ≈3−5\Gamma \approx 3 - 5, implying a covering factor of ∼\sim 3% of the line-emitting gas. Alternatively, the BLR clouds could be optically thin, in which case we constrain the BLR warm gas to be ∼10−5 M⊙\sim 10^{-5}\rm\ M_{\odot}. We also detected two HI and one OVI absorption lines that are within ∣Δv∣<150 km s−1|\Delta v| < 150\rm\ km\ s^{-1} of the BL Lac object. The OVI and one of the HI absorbers likely coexist due to their nearly identical velocities. We discuss several ionization models and find a photoionization model where the ionizing photon source is the BL Lac object can fit the observed ion column densities with reasonable physical parameters. This absorber can either be located in the interstellar medium of the host galaxy, or in the BLR.Comment: 7 pages, 2 figures, accepted for publication in Ap
    • …
    corecore