8,646 research outputs found

    A data acquisition and handling system for the measurement of radial plasma transport rates

    Get PDF
    A system which allows the transfer of experimental data from one or more transient recorders to a digital computer, the entry of calibration data and the entry of archival data is described. The overall approach is discussed and illustrated in detail

    Fluctuation spectra in the NASA Lewis bumpy-torus plasma

    Get PDF
    The electrostatic potential fluctuation spectrum in the NASA Lewis bumpy-torus plasma was studied with capacitive probes in the low pressure (high impedance) mode and in the high pressure (low impedance) mode. Under different operating conditions, the plasma exhibited electrostatic potential fluctuations (1) at a set of discrete frequencies, (2) at a continuum of frequencies, and (3) as incoherent high-frequency turbulence. The frequencies and azimuthal wave numbers were determined from digitally implemented autopower and cross-power spectra. The azimuthal dispersion characteristics of the unstable waves were examined by varying the electrode voltage, the polarity of the voltage, and the neutral background density at a constant magnetic field strength

    A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    Get PDF
    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented

    Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    Get PDF
    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements

    Determination of Strong-Interaction Widths and Shifts of Pionic X-Rays with a Crystal Spectrometer

    Get PDF
    Pionic 3d-2p atomic transitions in F, Na, and Mg have been studied using a bent crystal spectrometer. The pionic atoms were formed in the production target placed in the external proton beam of the Space Radiation Effects Laboratory synchrocyclotron. The observed energies and widths of the transitions are E=41679(3) eV and Γ=21(8) eV, E=62434(18) eV and Γ=22(80) eV, E=74389(9) eV and Γ=67(35) eV, in F, Na, and Mg, respectively. The results are compared with calculations based on a pion-nucleus optical potential

    Predictive model of response to tafamidis in hereditary ATTR polyneuropathy

    Get PDF
    BACKGROUNDThe hereditary transthyretin (TTR) amyloidoses are a group of diseases for which several disease-modifying treatments are now available. Long-term effectiveness of these therapies is not yet fully known. Moreover, the existence of alternative therapies has resulted in an urgent need to identify patient characteristics that predict response to each therapy.METHODSWe carried out a retrospective cohort study of 210 patients with hereditary TTR amyloidosis treated with the kinetic stabilizer tafamidis (20 mg qd). These patients were followed for a period of 18-66 months, after which they were classified by an expert as responders, partial responders, or nonresponders. Correlations between baseline demographic and clinical characteristics, as well as plasma biomarkers and response to therapy, were investigated.RESULTS34% of patients exhibited an almost complete arrest of disease progression (classified by an expert as responders); 36% had a partial to complete arrest in progression of some but not all disease components (partial responders); whereas the remaining 30% continued progressing despite therapy (nonresponders). We determined that disease severity, sex, and native TTR concentration at the outset of treatment were the most relevant predictors of response to tafamidis. Plasma tafamidis concentration after 12 months of therapy was also a predictor of response for male patients. Using these variables, we built a model to predict responsiveness to tafamidis.CONCLUSIONOur study indicates long-term effectiveness for tafamidis, a kinetic stabilizer approved for the treatment of hereditary TTR amyloidosis. Moreover, we created a predictive model that can be potentially used in the clinical setting to inform patients and clinicians in their therapeutic decisions.info:eu-repo/semantics/publishedVersio

    Low-Reynolds number swimming in gels

    Full text link
    Many microorganisms swim through gels, materials with nonzero zero-frequency elastic shear modulus, such as mucus. Biological gels are typically heterogeneous, containing both a structural scaffold (network) and a fluid solvent. We analyze the swimming of an infinite sheet undergoing transverse traveling wave deformations in the "two-fluid" model of a gel, which treats the network and solvent as two coupled elastic and viscous continuum phases. We show that geometric nonlinearities must be incorporated to obtain physically meaningful results. We identify a transition between regimes where the network deforms to follow solvent flows and where the network is stationary. Swimming speeds can be enhanced relative to Newtonian fluids when the network is stationary. Compressibility effects can also enhance swimming velocities. Finally, microscopic details of sheet-network interactions influence the boundary conditions between the sheet and network. The nature of these boundary conditions significantly impacts swimming speeds.Comment: 6 pages, 5 figures, submitted to EP

    Management Impacts on Ammonia Volatilization from Swine Manure

    Get PDF
    Ammonia released from swine manure into the air is becoming an increasingly controversial topic in Iowa. This experiment was conducted to evaluate the potential of several management strategies to reduce ammonia volatilization from swine manure over time. In six benchtop trials using twenty-four 1-L manure storage vessels, treatments were applied to the vessels, and manure and air samples were analyzed for concentrations of ammonia and other forms of nitrogen. Segregated storage of urine and feces, keeping manure cool and still, addition of yucca extract, and acidification reduced ammonia volatilization
    • …
    corecore