453 research outputs found

    Anisotropic thermodynamics of d-wave superconductors in the vortex state

    Full text link
    We show that the density of states and the thermodynamic properties of a 2D d-wave superconductor in the vortex state with applied magnetic field H\bf H in the plane depend on the angle between H\bf H and the order parameter nodes. Within a semiclassical treatment of the extended quasiparticle states, we obtain fourfold oscillations of the specific heat, measurement of which provides a simple probe of gap symmetry. The frequency dependence of the density of states and the temperature dependence of thermodynamic properties obey different power laws for field in the nodal and anti-nodal direction. The fourfold pattern is changed to twofold when orthorhombicity is considered.Comment: 5 pages, figures included, minor changes, published versio

    Computing Inferences for Large-Scale Continuous-Time Markov Chains by Combining Lumping with Imprecision

    Get PDF
    If the state space of a homogeneous continuous-time Markov chain is too large, making inferences - here limited to determining marginal or limit expectations - becomes computationally infeasible. Fortunately, the state space of such a chain is usually too detailed for the inferences we are interested in, in the sense that a less detailed - smaller - state space suffices to unambiguously formalise the inference. However, in general this so-called lumped state space inhibits computing exact inferences because the corresponding dynamics are unknown and/or intractable to obtain. We address this issue by considering an imprecise continuous-time Markov chain. In this way, we are able to provide guaranteed lower and upper bounds for the inferences of interest, without suffering from the curse of dimensionality.Comment: 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018

    Transport Properties of d-Wave Superconductors in the Vortex State

    Full text link
    We calculate the magnetic field dependence of quasiparticle transport properties in the vortex state of a d-wave superconductor arising solely from the quasiparticle's Doppler shift in the superflow field surrounding the vortex. Qualitative features agree well with experiments on cuprate and heavy fermion superconductors at low fields and temperatures. We derive scaling relations in the variable T/H1/2T/H^{1/2} valid at sufficiently low temperatures TT and fields HH, but show that these relations depend on the scattering phase shift, and are in general fulfilled only approximately even in the clean limit, due to the energy dependence of the quasiparticle relaxation time.Comment: 5 pages, 2 Postscript figure

    Scanning SQUID Susceptometry of a paramagnetic superconductor

    Full text link
    Scanning SQUID susceptometry images the local magnetization and susceptibility of a sample. By accurately modeling the SQUID signal we can determine the physical properties such as the penetration depth and permeability of superconducting samples. We calculate the scanning SQUID susceptometry signal for a superconducting slab of arbitrary thickness with isotropic London penetration depth, on a non-superconducting substrate, where both slab and substrate can have a paramagnetic response that is linear in the applied field. We derive analytical approximations to our general expression in a number of limits. Using our results, we fit experimental susceptibility data as a function of the sample-sensor spacing for three samples: 1) delta-doped SrTiO3, which has a predominantly diamagnetic response, 2) a thin film of LaNiO3, which has a predominantly paramagnetic response, and 3) a two-dimensional electron layer (2-DEL) at a SrTiO3/AlAlO3 interface, which exhibits both types of response. These formulas will allow the determination of the concentrations of paramagnetic spins and superconducting carriers from fits to scanning SQUID susceptibility measurements.Comment: 11 pages, 13 figure

    Upper limit on spontaneous supercurrents in Sr2_2RuO4_4

    Get PDF
    It is widely believed that the perovskite Sr2_2RuO4_4 is an unconventional superconductor with broken time reversal symmetry. It has been predicted that superconductors with broken time reversal symmetry should have spontaneously generated supercurrents at edges and domain walls. We have done careful imaging of the magnetic fields above Sr2_2RuO4_4 single crystals using scanning Hall bar and SQUID microscopies, and see no evidence for such spontaneously generated supercurrents. We use the results from our magnetic imaging to place upper limits on the spontaneously generated supercurrents at edges and domain walls as a function of domain size. For a single domain, this upper limit is below the predicted signal by two orders of magnitude. We speculate on the causes and implications of the lack of large spontaneous supercurrents in this very interesting superconducting system.Comment: 9 page

    Higher order eigenpair perturbations

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76914/1/AIAA-11149-583.pd

    Combined Paramagnetic and Diamagnetic Response of YBCO

    Full text link
    It has been predicted that the zero frequency density of states of YBCO in the superconducting phase can display interesting anisotropy effects when a magnetic field is applied parallel to the copper-oxide planes, due to the diamagnetic response of the quasi-particles. In this paper we incorporate paramagnetism into the theory and show that it lessens the anisotropy and can even eliminate it altogether. At the same time paramagnetism also changes the scaling with the square root of the magnetic field first deduced by Volovik leading to an experimentally testable prediction. We also map out the analytic structure of the zero frequency density of states as a function of the diamagnetic and paramagnetic energies. At certain critical magnetic field values we predict kinks as we vary the magnetic field. However these probably lie beyond currently accessible field strengths

    Angle Dependence of the Transverse Thermal Conductivity in YBa2_2Cu3_3O7_7 single crystals: Doppler Effect vs. Andreev scattering

    Full text link
    We have measured the transverse thermal conductivity κxy\kappa_{xy} of twinned and untwinned YBa2_2Cu3_3O7_7 single crystals as a function of angle θ\theta between the magnetic field applied parallel to the CuO2_2 planes and the heat current direction, at different magnetic fields and temperatures. For both crystals we observed a clear twofold variation in the field-angle dependence of κxy(θ)=κxy0(T,B)sin(2θ)\kappa_{xy}(\theta) = - \kappa^0_{xy}(T,B) \sin(2\theta). We have found that the oscillation amplitude κxy0\kappa^0_{xy} depends on temperature and magnetic field. Our results show that κxy0=aBln(1/(bB))\kappa^0_{xy} = a B \ln(1/(bB)) with the temperature- and sample-dependent parameters aa and bb. We discuss our results in terms of Andreev scattering of quasiparticles by vortices and a recently proposed theory based on the Doppler shift in the quasiparticle spectrum.Comment: 5 pages, 4 figure

    Quasiparticle transport in the vortex state of YBa_2Cu_3O_6.9

    Full text link
    The effect of vortices on quasiparticle transport in cuprate superconductors was investigated by measuring the low temperature thermal conductivity of YBa_2Cu_3O_6.9 in magnetic fields up to 8 T. The residual linear term (as T \to 0) is found to increase with field, directly reflecting the occupation of extended quasiparticle states. A study for different Zn impurity concentrations reveals a good agreement with recent calculations for a d-wave superconductor, thereby shedding light on the nature of scattering by both impurities and vortices. It also provides a quantitative measure of the gap near the nodes.Comment: 4 pages, 2 included eps figures, significant new analysis wrt other experiments, to appear in Phys Rev Lett 29 March 199
    corecore