453 research outputs found
Anisotropic thermodynamics of d-wave superconductors in the vortex state
We show that the density of states and the thermodynamic properties of a 2D
d-wave superconductor in the vortex state with applied magnetic field
in the plane depend on the angle between and the order parameter nodes.
Within a semiclassical treatment of the extended quasiparticle states, we
obtain fourfold oscillations of the specific heat, measurement of which
provides a simple probe of gap symmetry. The frequency dependence of the
density of states and the temperature dependence of thermodynamic properties
obey different power laws for field in the nodal and anti-nodal direction. The
fourfold pattern is changed to twofold when orthorhombicity is considered.Comment: 5 pages, figures included, minor changes, published versio
Computing Inferences for Large-Scale Continuous-Time Markov Chains by Combining Lumping with Imprecision
If the state space of a homogeneous continuous-time Markov chain is too
large, making inferences - here limited to determining marginal or limit
expectations - becomes computationally infeasible. Fortunately, the state space
of such a chain is usually too detailed for the inferences we are interested
in, in the sense that a less detailed - smaller - state space suffices to
unambiguously formalise the inference. However, in general this so-called
lumped state space inhibits computing exact inferences because the
corresponding dynamics are unknown and/or intractable to obtain. We address
this issue by considering an imprecise continuous-time Markov chain. In this
way, we are able to provide guaranteed lower and upper bounds for the
inferences of interest, without suffering from the curse of dimensionality.Comment: 9th International Conference on Soft Methods in Probability and
Statistics (SMPS 2018
Transport Properties of d-Wave Superconductors in the Vortex State
We calculate the magnetic field dependence of quasiparticle transport
properties in the vortex state of a d-wave superconductor arising solely from
the quasiparticle's Doppler shift in the superflow field surrounding the
vortex. Qualitative features agree well with experiments on cuprate and heavy
fermion superconductors at low fields and temperatures. We derive scaling
relations in the variable valid at sufficiently low temperatures
and fields , but show that these relations depend on the scattering
phase shift, and are in general fulfilled only approximately even in the clean
limit, due to the energy dependence of the quasiparticle relaxation time.Comment: 5 pages, 2 Postscript figure
Scanning SQUID Susceptometry of a paramagnetic superconductor
Scanning SQUID susceptometry images the local magnetization and
susceptibility of a sample. By accurately modeling the SQUID signal we can
determine the physical properties such as the penetration depth and
permeability of superconducting samples. We calculate the scanning SQUID
susceptometry signal for a superconducting slab of arbitrary thickness with
isotropic London penetration depth, on a non-superconducting substrate, where
both slab and substrate can have a paramagnetic response that is linear in the
applied field. We derive analytical approximations to our general expression in
a number of limits. Using our results, we fit experimental susceptibility data
as a function of the sample-sensor spacing for three samples: 1) delta-doped
SrTiO3, which has a predominantly diamagnetic response, 2) a thin film of
LaNiO3, which has a predominantly paramagnetic response, and 3) a
two-dimensional electron layer (2-DEL) at a SrTiO3/AlAlO3 interface, which
exhibits both types of response. These formulas will allow the determination of
the concentrations of paramagnetic spins and superconducting carriers from fits
to scanning SQUID susceptibility measurements.Comment: 11 pages, 13 figure
Upper limit on spontaneous supercurrents in SrRuO
It is widely believed that the perovskite SrRuO is an unconventional
superconductor with broken time reversal symmetry. It has been predicted that
superconductors with broken time reversal symmetry should have spontaneously
generated supercurrents at edges and domain walls. We have done careful imaging
of the magnetic fields above SrRuO single crystals using scanning Hall
bar and SQUID microscopies, and see no evidence for such spontaneously
generated supercurrents. We use the results from our magnetic imaging to place
upper limits on the spontaneously generated supercurrents at edges and domain
walls as a function of domain size. For a single domain, this upper limit is
below the predicted signal by two orders of magnitude. We speculate on the
causes and implications of the lack of large spontaneous supercurrents in this
very interesting superconducting system.Comment: 9 page
Higher order eigenpair perturbations
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76914/1/AIAA-11149-583.pd
Combined Paramagnetic and Diamagnetic Response of YBCO
It has been predicted that the zero frequency density of states of YBCO in
the superconducting phase can display interesting anisotropy effects when a
magnetic field is applied parallel to the copper-oxide planes, due to the
diamagnetic response of the quasi-particles. In this paper we incorporate
paramagnetism into the theory and show that it lessens the anisotropy and can
even eliminate it altogether. At the same time paramagnetism also changes the
scaling with the square root of the magnetic field first deduced by Volovik
leading to an experimentally testable prediction. We also map out the analytic
structure of the zero frequency density of states as a function of the
diamagnetic and paramagnetic energies. At certain critical magnetic field
values we predict kinks as we vary the magnetic field. However these probably
lie beyond currently accessible field strengths
Angle Dependence of the Transverse Thermal Conductivity in YBaCuO single crystals: Doppler Effect vs. Andreev scattering
We have measured the transverse thermal conductivity of twinned
and untwinned YBaCuO single crystals as a function of angle
between the magnetic field applied parallel to the CuO planes and
the heat current direction, at different magnetic fields and temperatures. For
both crystals we observed a clear twofold variation in the field-angle
dependence of . We
have found that the oscillation amplitude depends on
temperature and magnetic field. Our results show that with the temperature- and sample-dependent parameters and .
We discuss our results in terms of Andreev scattering of quasiparticles by
vortices and a recently proposed theory based on the Doppler shift in the
quasiparticle spectrum.Comment: 5 pages, 4 figure
Quasiparticle transport in the vortex state of YBa_2Cu_3O_6.9
The effect of vortices on quasiparticle transport in cuprate superconductors
was investigated by measuring the low temperature thermal conductivity of
YBa_2Cu_3O_6.9 in magnetic fields up to 8 T. The residual linear term (as T \to
0) is found to increase with field, directly reflecting the occupation of
extended quasiparticle states. A study for different Zn impurity concentrations
reveals a good agreement with recent calculations for a d-wave superconductor,
thereby shedding light on the nature of scattering by both impurities and
vortices. It also provides a quantitative measure of the gap near the nodes.Comment: 4 pages, 2 included eps figures, significant new analysis wrt other
experiments, to appear in Phys Rev Lett 29 March 199
- …