766 research outputs found
The Phase Structure of the Weakly Coupled Lattice Schwinger Model
The weak coupling expansion is applied to the single flavour Schwinger model
with Wilson fermions on a symmetric toroidal lattice of finite extent. We
develop a new analytic method which permits the expression of the partition
function as a product of pure gauge expectation values whose zeroes are the
Lee-Yang zeroes of the model. Application of standard finite-size scaling
techniques to these zeroes recovers previous numerical results for the small
and moderate lattice sizes to which those studies were restricted. Our
techniques, employable for arbitrarily large lattices, reveal the absence of
accumulation of these zeroes on the real hopping parameter axis at constant
weak gauge coupling. The consequence of this previously unobserved behaviour is
the absence of a zero fermion mass phase transition in the Schwinger model with
single flavour Wilson fermions at constant weak gauge coupling.Comment: 8 pages, 2 figures, insert to figure 2 include
The Structure of the Aoki Phase at Weak Coupling
A new method to determine the phase diagram of certain lattice fermionic
field theories in the weakly coupled regime is presented. This method involves
a new type of weak coupling expansion which is multiplicative rather than
additive in nature and allows perturbative calculation of partition function
zeroes. Application of the method to the single flavour Gross-Neveu model gives
a phase diagram consistent with the parity symmetry breaking scenario of Aoki
and provides new quantitative information on the width of the Aoki phase in the
weakly coupled sector.Comment: 9 pages, 1 figure (minor changes) To be published in Phys. Lett.
Scaling and Density of Lee-Yang Zeroes in the Four Dimensional Ising Model
The scaling behaviour of the edge of the Lee--Yang zeroes in the four
dimensional Ising model is analyzed. This model is believed to belong to the
same universality class as the model which plays a central role in
relativistic quantum field theory. While in the thermodynamic limit the scaling
of the Yang--Lee edge is not modified by multiplicative logarithmic
corrections, such corrections are manifest in the corresponding finite--size
formulae. The asymptotic form for the density of zeroes which recovers the
scaling behaviour of the susceptibility and the specific heat in the
thermodynamic limit is found to exhibit logarithmic corrections too. The
density of zeroes for a finite--size system is examined both analytically and
numerically.Comment: 17 pages (4 figures), LaTeX + POSTSCRIPT-file, preprint UNIGRAZ-UTP
20-11-9
Universal finite-size scaling for percolation theory in high dimensions
We present a unifying, consistent, finite-size-scaling picture for
percolation theory bringing it into the framework of a general,
renormalization-group-based, scaling scheme for systems above their upper
critical dimensions . Behaviour at the critical point is non-universal in
dimensions. Proliferation of the largest clusters, with fractal
dimension , is associated with the breakdown of hyperscaling there when free
boundary conditions are used. But when the boundary conditions are periodic,
the maximal clusters have dimension , and obey random-graph
asymptotics. Universality is instead manifest at the pseudocritical point,
where the failure of hyperscaling in its traditional form is universally
associated with random-graph-type asymptotics for critical cluster sizes,
independent of boundary conditions.Comment: Revised version, 26 pages, no figure
Universality of the Ising Model on Sphere-like Lattices
We study the 2D Ising model on three different types of lattices that are
topologically equivalent to spheres. The geometrical shapes are reminiscent of
the surface of a pillow, a 3D cube and a sphere, respectively. Systems of
volumes ranging up to O() sites are simulated and finite size scaling is
analyzed. The partition function zeros and the values of various cumulants at
their respective peak positions are determined and they agree with the scaling
behavior expected from universality with the Onsager solution on the torus
(). For the pseudocritical values of the coupling we find significant
anomalies indicating a shift exponent for sphere-like lattice
topology.Comment: 24 pages, LaTeX, 8 figure
The Weakly Coupled Gross-Neveu Model with Wilson Fermions
The nature of the phase transition in the lattice Gross-Neveu model with
Wilson fermions is investigated using a new analytical technique. This involves
a new type of weak coupling expansion which focuses on the partition function
zeroes of the model. Its application to the single flavour Gross-Neveu model
yields a phase diagram whose structure is consistent with that predicted from a
saddle point approach. The existence of an Aoki phase is confirmed and its
width in the weakly coupled region is determined. Parity, rather than chiral
symmetry breaking naturally emerges as the driving mechanism for the phase
transition.Comment: 15 pages including 1 figur
Griffiths singularities in the two dimensional diluted Ising model
We study numerically the probability distribution of the Yang-Lee zeroes
inside the Griffiths phase for the two dimensional site diluted Ising model and
we check that the shape of this distribution is that predicted in previous
analytical works. By studying the finite size scaling of the averaged smallest
zero at the phase transition we extract, for two values of the dilution, the
anomalous dimension, , which agrees very well with the previous estimated
values.Comment: 11 pages and 4 figures, some minor changes in Fig. 4, available at
http://chimera.roma1.infn.it/index_papers_complex.htm
Ising spins coupled to a four-dimensional discrete Regge skeleton
Regge calculus is a powerful method to approximate a continuous manifold by a
simplicial lattice, keeping the connectivities of the underlying lattice fixed
and taking the edge lengths as degrees of freedom. The discrete Regge model
employed in this work limits the choice of the link lengths to a finite number.
To get more precise insight into the behavior of the four-dimensional discrete
Regge model, we coupled spins to the fluctuating manifolds. We examined the
phase transition of the spin system and the associated critical exponents. The
results are obtained from finite-size scaling analyses of Monte Carlo
simulations. We find consistency with the mean-field theory of the Ising model
on a static four-dimensional lattice.Comment: 19 pages, 7 figure
Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q
The Q-state Potts model can be extended to noninteger and even complex Q in
the FK representation. In the FK representation the partition function,Z(Q,a),
is a polynomial in Q and v=a-1(a=e^-T) and the coefficients of this
polynomial,Phi(b,c), are the number of graphs on the lattice consisting of b
bonds and c connected clusters. We introduce the random-cluster transfer matrix
to compute Phi exactly on finite square lattices. Given the FK representation
of the partition function we begin by studying the critical Potts model
Z_{CP}=Z(Q,a_c), where a_c=1+sqrt{Q}. We find a set of zeros in the complex
w=sqrt{Q} plane that map to the Beraha numbers for real positive Q. We also
identify tilde{Q}_c(L), the value of Q for a lattice of width L above which the
locus of zeros in the complex p=v/sqrt{Q} plane lies on the unit circle. We
find that 1/tilde{Q}_c->0 as 1/L->0. We then study zeros of the AF Potts model
in the complex Q plane and determine Q_c(a), the largest value of Q for a fixed
value of a below which there is AF order. We find excellent agreement with
Q_c=(1-a)(a+3). We also investigate the locus of zeros of the FM Potts model in
the complex Q plane and confirm that Q_c=(a-1)^2. We show that the edge
singularity in the complex Q plane approaches Q_c as Q_c(L)~Q_c+AL^-y_q, and
determine the scaling exponent y_q. Finally, by finite size scaling of the
Fisher zeros near the AF critical point we determine the thermal exponent y_t
as a function of Q in the range 2<Q<3. We find that y_t is a smooth function of
Q and is well fit by y_t=(1+Au+Bu^2)/(C+Du) where u=u(Q). For Q=3 we find
y_t~0.6; however if we include lattices up to L=12 we find y_t~0.50.Comment: to appear in Physical Review
Critical phenomena on scale-free networks: logarithmic corrections and scaling functions
In this paper, we address the logarithmic corrections to the leading power
laws that govern thermodynamic quantities as a second-order phase transition
point is approached. For phase transitions of spin systems on d-dimensional
lattices, such corrections appear at some marginal values of the order
parameter or space dimension. We present new scaling relations for these
exponents. We also consider a spin system on a scale-free network which
exhibits logarithmic corrections due to the specific network properties. To
this end, we analyze the phase behavior of a model with coupled order
parameters on a scale-free network and extract leading and logarithmic
correction-to-scaling exponents that determine its field- and temperature
behavior. Although both non-trivial sets of exponents emerge from the
correlations in the network structure rather than from the spin fluctuations
they fulfil the respective thermodynamic scaling relations. For the scale-free
networks the logarithmic corrections appear at marginal values of the node
degree distribution exponent. In addition we calculate scaling functions, which
also exhibit nontrivial dependence on intrinsic network properties.Comment: 15 pages, 4 figure
- …