3,945 research outputs found

    Long Gamma-Ray Burst Progenitors: Boundary Conditions and Binary Models

    Full text link
    The observed association of Long Gamma-Ray Bursts (LGRBs) with peculiar Type Ic supernovae gives support to Woosley`s collapsar/hypernova model, in which the GRB is produced by the collapse of the rapidly rotating core of a massive star to a black hole. The association of LGRBs with small star-forming galaxies suggests low-metallicity to be a condition for a massive star to evolve to the collapsar stage. Both completely-mixed single star models and binary star models are possible. In binary models the progenitor of the GRB is a massive helium star with a close companion. We find that tidal synchronization during core-helium burning is reached on a short timescale (less than a few millennia). However, the strong core-envelope coupling in the subsequent evolutionary stages is likely to rule out helium stars with main-sequence companions as progenitors of hypernovae/GRBs. On the other hand, helium stars in close binaries with a neutron-star or black-hole companion can, despite the strong core-envelope coupling in the post-helium burning phase, retain sufficient core angular momentum to produce a hypernova/GRB.Comment: 8 pp., 2 figs, Proceedings of 5th Stromlo Symposiu

    The Extraordinary Abundances of QSO Broad Absorption Line Regions: A Matter of Novae?

    Get PDF
    The broad absorption lines (BALs) of QSOs indicate abundances of heavy elements, relative to hydrogen, that are 1 to 2 orders of magnitude higher than the solar values. In at least one QSO, an especially large enhancement of phosphorus is observed. These abundances resemble those in Galactic novae, and this suggests that novae may produce the BAL gas. The needed rate of nova outbursts may come from single white dwarfs that accrete gas as they pass through a supermassive accretion disk around a central black hole.Comment: 9 pages including 1 Postscript figure. Uses aaspp4.sty and flushrt.sty. Uuencoded, gzipped tarfile. To appear in Astrophys. J. (Letters), 1996 April 1

    Detection of mRNA using the BIACORE

    Get PDF
    We present the detection of native mRNA using the BIACORE system. The influence of different probes and flow rates on the detection is shown and compared to the hybridisation of oligonucleotides. Probes for mRNA detection were chosen by calculations of secondary structures using energy minimizing criteria based on the algorithm of Zuker. Probe concentrations were optimised as well as the regeneration conditions for the sensor surface. The influence of the flow rate appeared to be more marked for mRNA than for oligonucleotide hybridisation

    T Pyxidis: The First Cataclysmic Variable with a Collimated Jet

    Get PDF
    We present the first observational evidence for a collimated jet in a cataclysmic variable system; the recurrent nova T Pyxidis. Optical spectra show bipolar components of Hα\alpha with velocities 1400km/s\sim 1400 km/s, very similar to those observed in the supersoft X-ray sources and in SS 433. We argue that a key ingredient of the formation of jets in the supersoft X-ray sources and T Pyx (in addition to an accretion disk threaded by a vertical magnetic field), is the presence of nuclear burning on the surface of the white dwarf.Comment: 10 pages 2 figures to appear in ApJ Letter

    Evolution of Neutron-Star, Carbon-Oxygen White-Dwarf Binaries

    Get PDF
    At least one, but more likely two or more, eccentric neutron-star, carbon-oxygen white-dwarf binaries with an unrecycled pulsar have been observed. According to the standard scenario for evolving neutron stars which are recycled in common envelope evolution we expect to observe \gsim 50 such circular neutron star-carbon oxygen white dwarf binaries, since their formation rate is roughly equal to that of the eccentric binaries and the time over which they can be observed is two orders of magnitude longer, as we shall outline. We observe at most one or two such circular binaries and from that we conclude that the standard scenario must be revised. Introducing hypercritical accretion into common envelope evolution removes the discrepancy by converting the neutron star into a black hole which does not emit radio waves, and therefore would not be observed.Comment: 25 pages, 1 figure, accepted in Ap

    Does Sub-millisecond Pulsar XTE J1739-285 Contain a Low Magnetic Neutron Star or Quark Star ?

    Full text link
    With the possible detection of the fastest spinning nuclear-powered pulsar XTE J1739-285 of frequency 1122 Hz (0.8913 ms), it arouses us to constrain the mass and radius of its central compact object and to imply the stellar matter compositions: neutrons or quarks. Spun-up by the accreting materials to such a high rotating speed, the compact star should have either a small radius or short innermost stable circular orbit. By the empirical relation between the upper kHz quasi-periodic oscillation frequency and star spin frequency, a strong constraint on mass and radius is obtained as 1.51 solar masses and 10.9 km, which excludes most equations of states (EOSs) of normal neutrons and strongly hints the star promisingly to be a strange quark star. Furthermore, the star magnetic field is estimated to be about 4×107(G)<B<109(G)4\times10^{7} (G) < B < 10^{9} (G) , which reconciles with those of millisecond radio pulsars, revealing the clues of the evolution linkage of two types of astrophysical objects.Comment: 10 pages, 2 figures, accepted by PASP 200

    XMM-Newton discovery of 217 s pulsations in the brightest persistent supersoft X-ray source in M31

    Full text link
    We report on the discovery of a periodic modulation in the bright supersoft X-ray source XMMU J004252.5+411540 detected in the 2000-2004 XMM-Newton observations of M31. The source exhibits X-ray pulsations with a period P~217.7 s and a quasi-sinusoidal pulse shape and pulsed fraction ~7-11%. We did not detect statistically significant changes in the pulsation period on the time scale of 4 years. The X-ray spectra of XMMU J004252.5+411540 are extremely soft and can be approximated with an absorbed blackbody of temperature 62-77 eV and a weak power law tail of photon index ~1.7-3.1 in the 0.2-3.0 keV energy band. The X-ray properties of the source and the absence of an optical/UV counterpart brighter than 19 mag suggest that it belongs to M31. The estimated bolometric luminosity of the source varies between ~2e38 and ~8e38 ergs/s at 760 kpc, depending on the choice of spectral model. The X-ray pulsations and supersoft spectrum of XMMU J004252.5+411540 imply that it is almost certainly an accreting white dwarf, steadily burning hydrogen-rich material on its surface. We interpret X-ray pulsations as a signature of the strong magnetic field of the rotating white dwarf. Assuming that the X-ray source is powered by disk accretion, we estimate its surface field strength to be in the range 4e5 G <B_{0}<8e6 G. XMMU J004252.5+411540 is the second supersoft X-ray source in M31 showing coherent pulsations, after the transient supersoft source XMMU J004319.4+411758 with 865.5 s pulsation period.Comment: 11 pages, 4 figures, uses emulateapj style. Submitted to Ap

    Hydrodynamics of the stream-disk impact in interacting binaries

    Get PDF
    We use hydrodynamic simulations to provide quantitative estimates of the effects of the impact of the accretion stream on disks in interacting binaries. For low accretion rates, efficient radiative cooling of the hotspot region can occur, and the primary consequence of the stream impact is stream overflow toward smaller disk radii. The stream is well described by a ballistic trajectory, but larger masses of gas are swept up and overflow at smaller, but still highly supersonic, velocities. If cooling is inefficient, overflow still occurs, but there is no coherent stream inward of the disk rim. Qualitatively, the resulting structure appears as a bulge extending downstream along the disk rim. We calculate the mass fraction and velocity of the overflowing component as a function of the important system parameters, and discuss the implications of the results for X-ray observations and doppler tomography of cataclysmic variables, low-mass X-ray binaries and supersoft X-ray sources.Comment: 16 pages, including 8 figures. 1 color figure as a jpeg. ApJ, in pres

    XTE J0111.2-7317 : a nebula-embedded X-ray binary in the SMC

    Full text link
    The observed characteristics of the nebulosity surrounding the SMC High Mass X-ray Binary XTE J0111.2-7317 are examined in the context of three possible nebular types: SNR, bowshock and HII region. Observational evidence is presented which appears to support the interpretation that the nebulosity surrounding XTE J0111.2-7317 is an HII region. The source therefore appears to be a normal SMC Be X-ray binary (BeXRB) embedded in a locally enhanced ISM which it has photoionised to create an HII region. This is supported by observations of the X-ray outburst seen with BATSE and RXTE in 1998-1999. It exhibited characteristics typical of a giant or type II outburst in a BeXRB including large spin-up rates, Lx~10E38 erg/sq.cm-s, and a correlation between spin-up rate and pulsed flux. However, the temporal profile of the outburst was unusual, consisting of two similar intensity peaks, with the first peak of shorter duration than the second.Comment: Accepted for publication by MNRA

    The Possible White Dwarf-Neutron Star Connection

    Get PDF
    The current status of the problem of whether neutron stars can form, in close binary systems, by accretion-induced collapse (AIC) of white dwarfs is examined. We find that, in principle, both initially cold C+O white dwarfs in the high-mass tail of their mass distribution in binaries and O+Ne+Mg white dwarfs can produce neutron stars. Which fractions of neutron stars in different types of binaries (or descendants from binaries) might originate from this process remains uncertain.Comment: 6 pages. To appear in "White Dwarfs", ed. J. Isern, M. Hernanz, and E. Garcia-Berro (Dordrecht: Kluwer
    corecore