1,486 research outputs found

    Ultrafast spectroscopy of single molecules

    Get PDF
    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. At the single molecule level a wide range of exciton delocalisation lengths and energy redistribution times is revealed. Next, two color pump-probe experiments are presented as a step to addressing ultrafast energy transfer in individual complexes

    Three-dimensional nanoscopy of colloidal crystals.

    No full text
    We demonstrate the direct three-dimensional imaging of densely packed colloidal nanostructures using stimulated emission depletion microscopy. A combination of two de-excitation patterns yields a resolution of 43 nm in the lateral and 125 nm in the axial direction and an effective focal volume that is by 126-fold smaller than that of a corresponding confocal microscope. The mapping of a model system of spheres organized by confined convective assembly unambiguously identified face-centered cubic, hexagonal close-packed, random hexagonal close-packed, and body-centered cubic structures. An increasing need for noninvasive visualization on the nanoscale has fueled the development of far-field optical microscopy with resolution far below the wavelength of light.1,2 In materials science, structural studies with length scales of interest in the (sub-) micrometer range have typically been conducted either by collective scattering-based techniques or electron and scanning probe microscopes. Far-field optical methods however retain the advantage of simultaneously providing local, dynamic, and noninvasiv

    Designing chromatic optical retarder stacks for segmented next-generation easySTED phase plates

    Get PDF
    Fluorescence nanoscopy methods based on the RESOLFT principle, such as beam-scanning STED nanoscopy, require the co-alignment of optical beams for molecular state (on/off) switching and fluorescence excitation. The complexity and stability of the beam alignment can be drastically simplified and improved by using a single-mode fibre as the sole light source for all required laser beams. This in turn then requires a chromatic optical element for shaping the off-switching beam into a focal-plane donut while simultaneously leaving the focal intensity distributions at other wavelengths shaped as regular focal spots. Here we describe novel designs of such so-called ‘easySTED phase plates’ and provide a rationale how to find the desired spectral signature for combinations of multiple wavelengths

    Fluorescence assisted capillary electrophoresis of glycans enabled by the negatively charged auxochromes in 1-Aminopyrenes

    Get PDF
    A compact and negatively charged acceptor group, N-(cyanamino)sulfonyl, is introduced for dye design and its influence on the absorption and emission spectra of the “push–pull” chromophores is demonstrated with 1,3,6-tris[(cyanamino)sulfonyl]-8-aminopyrene. The new sulfonamides, including O-phosphorylated (3-hydroxyazetidine)-N-sulfonyl, are negatively charged electron acceptors and auxochromes. 1-Aminopyrenes decorated with the new sulfonamides have three or six negative charges (pH ≄8), low m/z ratios, high mobilities in an electric field, and yellow to orange emission. We labeled maltodextrin oligomers by reductive amination, separated the products by electrophoresis, and demonstrated their high brightness in a commercial DNA analyzer and the distribution of the emission signal among the detection channels

    Hybridization of sub-gap states in one-dimensional superconductor/semiconductor Coulomb islands

    Full text link
    We present measurements of one-dimensional superconductor-semiconductor Coulomb islands, fabricated by gate confinement of a two-dimensional InAs heterostructure with an epitaxial Al layer. When tuned via electrostatic side gates to regimes without sub-gap states, Coulomb blockade reveals Cooper-pair mediated transport. When sub-gap states are present, Coulomb peak positions and heights oscillate in a correlated way with magnetic field and gate voltage, as predicted theoretically, with (anti) crossings in (parallel) transverse magnetic field indicating Rashba-type spin-orbit coupling. Overall results are consistent with a picture of overlapping Majorana zero modes in finite wires

    Autonomous bioluminescence imaging of single mammalian cells with the bacterial bioluminescence system.

    Get PDF
    Bioluminescence-based imaging of living cells has become an important tool in biological and medical research. However, many bioluminescence imaging applications are limited by the requirement of an externally provided luciferin substrate and the low bioluminescence signal which restricts the sensitivity and spatiotemporal resolution. The bacterial bioluminescence system is fully genetically encodable and hence produces autonomous bioluminescence without an external luciferin, but its brightness in cell types other than bacteria has, so far, not been sufficient for imaging single cells. We coexpressed codon-optimized forms of the bacterial luxCDABE and frp genes from multiple plasmids in different mammalian cell lines. Our approach produces high luminescence levels that are comparable to firefly luciferase, thus enabling autonomous bioluminescence microscopy of mammalian cells

    Anharmonicity of a Gatemon Qubit with a Few-Mode Josephson Junction

    Full text link
    Coherent operation of gate-voltage-controlled hybrid transmon qubits (gatemons) based on semiconductor nanowires was recently demonstrated. Here we experimentally investigate the anharmonicity in epitaxial InAs-Al Josephson junctions, a key parameter for their use as a qubit. Anharmonicity is found to be reduced by roughly a factor of two compared to conventional metallic junctions, and dependent on gate voltage. Experimental results are consistent with a theoretical model, indicating that Josephson coupling is mediated by a small number of highly transmitting modes in the semiconductor junction

    Enhanced incorporation of subnanometer tags into cellular proteins for fluorescence nanoscopy via optimized genetic code expansion

    Get PDF
    With few-nanometer resolution recently achieved by a new generation of fluorescence nanoscopes (MINFLUX and MINSTED), the size of the tags used to label proteins will increasingly limit the ability to dissect nanoscopic biological structures. Bioorthogonal (click) chemical groups are powerful tools for the specific detection of biomolecules. Through the introduction of an engineered aminoacyl–tRNA synthetase/tRNA pair (tRNA: transfer ribonucleic acid), genetic code expansion allows for the site-specific introduction of amino acids with “clickable” side chains into proteins of interest. Welldefined label positions and the subnanometer scale of the protein modification provide unique advantages over other labeling approaches for imaging at molecular-scale resolution. We report that, by pairing a new N-terminally optimized pyrrolysyl–tRNA synthetase (chPylRS2020) with a previously engineered orthogonal tRNA, clickable amino acids are incorporated with improved efficiency into bacteria and into mammalian cells. The resulting enhanced genetic code expansion machinery was used to label ÎČ-actin in U2OS cell filopodia for MINFLUX imaging with minimal separation of fluorophores from the protein backbone. Selected data were found to be consistent with previously reported high-resolution information from cryoelectron tomography about the cross-sectional filament bundling architecture. Our study underscores the need for further improvements to the degree of labeling with minimal-offset methods in order to fully exploit molecularscale optical three-dimensional resolution

    Optimal General Matchings

    Full text link
    Given a graph G=(V,E)G=(V,E) and for each vertex v∈Vv \in V a subset B(v)B(v) of the set {0,1,
,dG(v)}\{0,1,\ldots, d_G(v)\}, where dG(v)d_G(v) denotes the degree of vertex vv in the graph GG, a BB-factor of GG is any set F⊆EF \subseteq E such that dF(v)∈B(v)d_F(v) \in B(v) for each vertex vv, where dF(v)d_F(v) denotes the number of edges of FF incident to vv. The general factor problem asks the existence of a BB-factor in a given graph. A set B(v)B(v) is said to have a {\em gap of length} pp if there exists a natural number k∈B(v)k \in B(v) such that k+1,
,k+p∉B(v)k+1, \ldots, k+p \notin B(v) and k+p+1∈B(v)k+p+1 \in B(v). Without any restrictions the general factor problem is NP-complete. However, if no set B(v)B(v) contains a gap of length greater than 11, then the problem can be solved in polynomial time and Cornuejols \cite{Cor} presented an algorithm for finding a BB-factor, if it exists. In this paper we consider a weighted version of the general factor problem, in which each edge has a nonnegative weight and we are interested in finding a BB-factor of maximum (or minimum) weight. In particular, this version comprises the minimum/maximum cardinality variant of the general factor problem, where we want to find a BB-factor having a minimum/maximum number of edges. We present an algorithm for the maximum/minimum weight BB-factor for the case when no set B(v)B(v) contains a gap of length greater than 11. This also yields the first polynomial time algorithm for the maximum/minimum cardinality BB-factor for this case
    • 

    corecore