121 research outputs found

    Multifunctional Cotton Impregnated with Multilayer Chitosan/Lignin Nanocoating and Ag Nanoparticles

    Get PDF
    he demand for clothes with antimicrobial and UV protective properties is continually growing. In an attempt to develop a simple and efficient treatment for cotton fabrics, layer-by-layer deposition of chitosan and magnesium lignosulfonate followed by in situ synthesis of Ag nanoparticles (NPs) was performed. Magnesium lignosulfonate acts as a stabilizing agent and UV blocker while NaBH4 is applied as a reducing agent. The influence of the number of bilayers (4 and 12) and the initial concentration of AgNO3 solution (10 mM and 20 mM) on UV protection factor (UPF) and antimicrobial activity against Gram-negative bacteria Escherichia coli, Grampositive bacteria Staphylococcus aureus and yeast Candida albicans was studied. The presence of nanocoating on the surface of cotton fabric is confirmed by FTIR and XPS analyses. XPS and FESEM analyses reveal a successful synthesis of Ag NPs on the surface of cotton fibers with an average dimension of 35 nm. A four bilayer coating is sufficient to reach maximum 50+ UV protection. Maximum reduction of all investigated microorganisms is achieved with 12 bilayers and application of 20 mM AgNO3 solution

    Synergistic and competitive aspects of the adsorption of Poly(ethylene glycol) and Poly(vinyl alcohol) onto Na-Bentonite

    Get PDF
    Graph Presented) The competitive adsorption of poly(ethylene glycol) (PEG) and poly(vinyl alcohol) (PVOH) onto Na-bentonite has been assessed quantitatively. Particular emphasis was focused on the amount of organic located within the bentonite interlayer and any subsequent eff ects on the extent of layer expansion. The individual isotherms showed strong adsorption for both PVOH and PEG at amounts lower than the quantities required to produce a fully loaded bilayer (0.33 g of PVOH/g of clay) and single layered structures (0.10 g of PEG/g of clay), respectively. Above these concentrations, the incremental amounts adsorbed were smaller, and the concentration of adsorbates in solution gradually increased. Na-bentonite adsorbed more PVOH than PEG at any given concentration. In the competitive study, the amount of PVOH adsorbed was enhanced in the presence of PEG (0.10 and 0.30 g/g of clay), but less PEG was adsorbed. At low loadings of PVOH (0.02-0.10 g/g of clay), the amount of adsorbed PEG was increased but at higher PVOH levels PEG adsorption was reduced. The XRD data showed stepped changes in the d-spacing as the adsorbed amounts of both PEG and PVOH increased. The PEG-bentonite samples did not expand beyond a bilayer structure (18 A˚), but the XRD data for PVOH-treated samples indicated the formation of multilayer structures (d ≥ 44 A˚)

    IMECE2006-14408 AN UNDERGRADUATE LABORATORY: THE EFFECT OF NANOPARTICLE MICROSTRUCTURE ON THE ELECTRICAL PROPERTIES OF POLYMER NANOCOMPOSITES

    No full text
    ABSTRACT Recent research into the effect of nanoparticle organization on the electrical properties of nanocomposite films was used to create a hands-on laboratory for undergraduate education in nanomanufacturing. Students created two composites using solvent-based solution and polymer emulsion to show that a non-random microstructure can produce the required electrical conductivity with less added nanoparticles. Students evaluated the materials by 4-point probe and scanning electron microscopy

    An undergraduate laboratory: The effect of nanoparticle microstructure on the electrical properties of polymer nanocomposites

    No full text
    Recent research into the effect of nanoparticle organization on the electrical properties of nanocomposite films was used to create a hands-on laboratory for undergraduate education in nanomanufacturing. Students created two composites using solvent-based solution and polymer emulsion to show that a non-random microstructure can produce the required electrical conductivity with less added nanoparticles. Students evaluated the materials by 4-point probe and scanning electron microscopy. Copyright © 2006 by ASME

    Spray formation of an impermeable barrier layer on a tire

    No full text
    A method is provided for forming an impermeable barrier layer on an inner tire surface of a tire. An assembly is also provided along with a kit for forming an impermeable barrier layer on an inner tire surface of a tire accordingly.U

    Spray formation of an impermeable barrier layer on a tire

    No full text
    A method is provided for forming an impermeable barrier layer on an inner tire surface of a tire. An assembly is also provided along with a kit for forming an impermeable barrier layer on an inner tire surface of a tire accordingly.U

    Spray formation of an impermeable barrier layer on a tire

    No full text
    A method is provided for forming an impermeable barrier layer on an inner tire surface of a tire. An assembly is also provided along with a kit for forming an impermeable barrier layer on an inner tire surface of a tire accordingly.U

    Spray formation of an impermeable barrier layer on a tire

    No full text
    A method is provided for forming an impermeable barrier layer on an inner tire surface of a tire. An assembly is also provided along with a kit for forming an impermeable barrier layer on an inner tire surface of a tire accordingly.U
    corecore