6,358 research outputs found

    A Superfield for Every Dash-Chromotopology

    Full text link
    The recent classification scheme of so-called adinkraic off-shell supermultiplets of N-extended worldline supersymmetry without central charges finds a combinatorial explosion. Completing our earlier efforts, we now complete the constructive proof that all of these trillions or more of supermultiplets have a superfield representation. While different as superfields and supermultiplets, these are still super-differentially related to a much more modest number of minimal supermultiplets, which we construct herein.Comment: 13 pages, integrated illustration

    Supersymmetric Fluid Dynamics

    Full text link
    Recently Navier-Stokes (NS) equations have been derived from the duality between the black branes and a conformal fluid on the boundary of AdS_5. Nevertheless, the full correspondence has to be established between solutions of supergravity in AdS_5 and supersymmetric field theories on the boundary. That prompts the construction of NS equations for a supersymmetric fluid. In the framework of rigid susy, there are several possibilities and we propose one candidate. We deduce the equations of motion in two ways: both from the divergenless condition on the energy-momentum tensor and by a suitable parametrization of the auxiliary fields. We give the complete component expansion and a very preliminary analysis of the physics of this supersymmetric fluid.Comment: 24 pages, Latex2

    Nanocrystal seeding: A low temperature route to polycrystalline Si films

    Get PDF
    A novel method is presented for growth of polycrystalline silicon films on amorphous substrates at temperatures of 540–575 °C. Grain nucleation and grain growth are performed in two steps, using Si nanocrystals as nuclei ("seeds"). The nanocrystal seeds are produced by excimer laser photolysis of disilane in a room temperature flow cell. Film (grain) growth occurs epitaxially on the seeds in a separate thermal chemical vapor deposition (CVD) step, with growth rates 10–100 times higher than similar CVD growth rates on crystal Si. Grain size and CVD growth rates are dependent on seed coverage, for seed coverage <0.2 monolayers

    D=(2+1) O(N) Wess-Zumino model in a large N limit

    Full text link
    Using the superfield formalism, the effective Kahlerian superpotential of the massless \cal{N}=1 O(N) Wess-Zumino model is computed in the limit of large N, in three spacetime dimensions. The effective Kahlerian superpotential is evaluated at the subleading order in the 1/N expansion, which involves diagrams up to two-loop order, for a small coupling constant. We show that the O(N) symmetry of the model is preserved in this approximation and that no mass is dynamically generated in the supersymmetric phase. We discuss why spontaneous O(N) symmetry breaking cannot be induced by radiative corrections in such model.Comment: 8 pages, 1 figur

    Seeking the Loop Quantum Gravity Barbero-Immirzi Parameter and Field in 4D, N\cal N = 1 Supergravity

    Full text link
    We embed the Loop Quantum Gravity Barbero-Immirzi parameter and field within an action describing 4D, N\cal N = 1 supergravity and thus within a Low Energy Effective Action of Superstring/M-Theory. We use the fully gauge-covariant description of supergravity in (curved) superspace. The gravitational constant is replaced with the vacuum expectation value of a scalar field, which in local supersymmetry is promoted to a complex, covariantly chiral scalar superfield. The imaginary part of this superfield couples to a supersymmetric Holst term. The Holst term also serves as a starting point in the Loop Quantum Gravity action. This suggest the possibility of a relation between Loop Quantum Gravity and supersymmetric string theory, where the Barbero-Immirzi parameter and field of the former play the role of the supersymmetric axion in the latter. Adding matter fermions in Loop Quantum Gravity may require the extension of the Holst action through the Nieh-Yan topological invariant, while in pure, matter-free supergravity their supersymmetric extensions are the same. We show that, when the Barbero-Immirzi parameter is promoted to a field in the context of 4D supergravity, it is equivalent to adding a dynamical complex chiral (dilaton-axion) superfield with a non-trivial kinetic term (or K\"ahler potential), coupled to supergravity.Comment: 20 pages, 1 figure. Replaced with accepted version in Phys. Rev.

    The Real Anatomy of Complex Linear Superfields

    Full text link
    Recent work on classicication of off-shell representations of N-extended worldline supersymmetry without central charges has uncovered an unexpectedly vast number--trillions of even just (chromo)topology types--of so called adinkraic supermultiplets. Herein, we show by explicit analysis that a long-known but rarely used representation, the complex linear supermultiplet, is not adinkraic, cannot be decomposed locally, but may be reduced by means of a Wess-Zumino type gauge. This then indicates that the already unexpectedly vast number of adinkraic off-shell supersymmetry representations is but the proverbial tip of the iceberg.Comment: 21 pages, 4 figure

    On Graph-Theoretic Identifications of Adinkras, Supersymmetry Representations and Superfields

    Full text link
    In this paper we discuss off-shell representations of N-extended supersymmetry in one dimension, ie, N-extended supersymmetric quantum mechanics, and following earlier work on the subject codify them in terms of certain graphs, called Adinkras. This framework provides a method of generating all Adinkras with the same topology, and so also all the corresponding irreducible supersymmetric multiplets. We develop some graph theoretic techniques to understand these diagrams in terms of a relatively small amount of information, namely, at what heights various vertices of the graph should be "hung". We then show how Adinkras that are the graphs of N-dimensional cubes can be obtained as the Adinkra for superfields satisfying constraints that involve superderivatives. This dramatically widens the range of supermultiplets that can be described using the superspace formalism and organizes them. Other topologies for Adinkras are possible, and we show that it is reasonable that these are also the result of constraining superfields using superderivatives. The family of Adinkras with an N-cubical topology, and so also the sequence of corresponding irreducible supersymmetric multiplets, are arranged in a cyclical sequence called the main sequence. We produce the N=1 and N=2 main sequences in detail, and indicate some aspects of the situation for higher N.Comment: LaTeX, 58 pages, 52 illustrations in color; minor typos correcte

    Dynamical breaking of gauge symmetry in supersymmetric quantum electrodynamics in three-dimensional spacetime

    Full text link
    The dynamical breaking of gauge symmetry in the supersymmetric quantum electrodynamics in three-dimensional spacetime is studied at two-loop approximation. At this level, the effective superpotential is evaluated in a supersymmetric phase. At one-loop order, we observe a generation of the Chern-Simons term due to a parity violating term present in the classical action. At two-loop order, the scalar background superfield acquires a nonvanishing vacuum expectation value, generating a mass term AαAαA^{\alpha}A_{\alpha} through Coleman-Weinberg mechanism. It is observed that the mass of gauge superfield is predominantly an effect of the topological Chern-Simons term.Comment: 10 pages, 2 figures, PRD versio

    A Note on Embedding of M-Theory Corrections into Eleven-Dimensional Superspace

    Full text link
    By analyzing eleven-dimensional superspace fourth-rank superfield strength F-Bianchi identities, we show that M-theory corrections to eleven-dimensional supergravity can not be embedded into the mass dimension zero constraints, such as the (\g^{a b})_{\a\b} X_{a b}{}^c or i (\g^{a_1... a_5})_{\a\b} X_{a_1... a_5}{}^c -terms in the supertorsion constraint T_{\a\b}{}^c. The only possible modification of superspace constraint at dimension zero is found to be the scaling of F_{\a\b c d} like F_{\a\b c d} = (1/2) \big(\g_{c d}\big)_{\a\b} e^\Phi for some real scalar superfield \Phi, which alone is further shown not enough to embed general M-theory corrections. This conclusion is based on the dimension zero F-Bianchi identity under the two assumptions: (i) There are no negative dimensional constraints on the F-superfield strength: F_{\a\b\g\d} = F_{\a\b\g d} =0; (ii) The supertorsion T-Bianchi identities and F-Bianchi identities are not modified by Chern-Simons terms. Our result can serve as a powerful tool for future exploration of M-theory corrections embedded into eleven-dimensional superspace supergravity.Comment: 14 pages, latex, some minor typos corrected, as well as old section 5 deleted, due to the subtlety about Chern-Simons term in F-Bianchi identitie

    Effective Symmetries of the Minimal Supermultiplet of N = 8 Extended Worldline Supersymmetry

    Full text link
    A minimal representation of the N = 8 extended worldline supersymmetry, known as the `ultra-multiplet', is closely related to a family of supermultiplets with the same, E(8) chromotopology. We catalogue their effective symmetries and find a Spin(4) x Z(2) subgroup common to them all, which explains the particular basis used in the original construction. We specify a constrained superfield representation of the supermultiplets in the ultra-multiplet family, and show that such a superfield representation in fact exists for all adinkraic supermultiplets. We also exhibit the correspondences between these supermultiplets, their Adinkras and the E(8) root lattice bases. Finally, we construct quadratic Lagrangians that provide the standard kinetic terms and afford a mixing of an even number of such supermultiplets controlled by a coupling to an external 2-form of fluxes.Comment: 13 Figure
    • …
    corecore